REAL ANALYSIS QUALIFYING EXAM

JUNE 2018

Answer all 4 questions. In your proofs, you may use any major theorem, except the result you are trying to prove (or a variant of it). State clearly what theorems you use. Good luck.

Exercise 1.

F is continuous.

(2) For any a > 0, compute $e^{-x^2} \cos(ax) dx$ and show that it is $e^{-\frac{a^2}{4}}$

Exercise 2.

- (1) State the Radon-Nikodym theorem for finite positive measures.
- (2) Let , , and μ denote finite positive measures such that is absolutely continuous with respect to μ with Radon-Nikodym derivative f and is absolutely continuous with respect to with Radon-Nikodym derivative g. Show that is absolutely continuous with respect to μ with Radon-Nikodym derivative fg.

Exercise 3. Let X, Y be Banach spaces and let $\{T_n\}$ be a sequence in L(X, Y) such that $\lim_n T(x)$ exists for every X. Show that T: X Y defined by this limit is a bounded linear operator.

Exercise 4.

- (1) Prove the uniqueness of a (left-invariant) Haar measure on a locally compact hausdor topological group.
- (2) Prove that Haar measure for a compact group or abelian group is both left and right invariant.

COMPLEX ANALYSIS QUALIFYING EXAM

Write your answers on the test pages. Show all your work and explain all your
reasoning. You may use any standard result, as long as you state clearly what result
you are using (including its hypotheses). Exception: you may not use a result which
is the same as the problem you are being asked to do. Each problem has a noted
value, in total 40 points.

Name: .			

1. (10 points) Prove that there is no function f such that f is analytic on the punctured unit disk $D \setminus \{0\}$ and that f has a simple pole at 0.

2. (10 points) Evaluate the integral

$$\int_{-}^{\infty} \frac{x^2 dx}{(1+x^2)^2}.$$

3. (10 points) Let f be an entire function such that f(z + m + ni) = f(z) for all $z \in \mathbb{C}$ and all $m, n \in \mathbb{Z}$. Prove that f is constant.

- **4**. (10 points) Let be a meromorphic one-form on the Riemann sphere, i.e. locally = f(z)dz, where f is a meromorphic function of the local coordinate z and is compatible with change of coordinates.
 - (a) If has a unique pole, prove that the residue of at the pole is zero.

(b) If has a unique zero and two poles, prove that the residue of at each pole is nonzero.