


1 Introduction

Tail risk and extreme events are important research topics in economics and Önance. In

many applications, the features of interest are tail properties such as tail index and extreme

quantiles. Existing literature has extensively studied the case with fully observed datasets. In

comparison, this article explores the case with tail censoring. We argue that it is important to

take into account the censoring if the research interest is in the tail, even when the censoring

fraction is small. We provide a new method to construct estimators and conÖdence intervals

for tail features.

Suppose one has a random sample from some underlying distribution F , where the obser-

vations larger than some threshold T are replaced with T or simply unobserved. In principle,

tail features cannot be even identiÖed if they entirely depend on the right tail part of F that

is beyond T . However, we can back out the tail-related features by extrapolation under two

assumptions. They are that (i) the tail of F can be well approximated by some suitably

chosen parametric distribution, and (ii) T is su¢ ciently large so that only a small fraction

of samples are censored. The Örst assumption has been thoroughly studied in the statistic

literature and is satisÖed by many commonly used distributions. The second assumption is

also satisÖed in many interesting empirical applications, which motivate this article.

Our Örst motivating example is the Current Population Survey (CPS) dataset, which

has been the primary data source used for investigating the distributions of individual earn-

ings and household income in the US. Featured studies using CPS data include Armour,

Burkhauser, and Larrimore (2013) and Eika, Mogstad, and Zafar (2019), among many oth-

ers. In CPS, the individual earnings larger than some threshold T are typically censored

(also called topcoded) and replaced with T for conÖdential reasons.1 In 2019, the censoring

threshold is 310000 USD, leading to an approximately 0.58% censoring fraction in the full

sample of individuals between 18 and 70 years old. This quantity is also substantially di¤er-

ent across the subsamples deÖned by race and gender but remains small, as seen in Table 1.

Using this dataset, we aim to estimate and construct conÖdence intervals for the tail index

that measures the tail heaviness of the income distribution and the extreme quantiles.

1The topcoding has constantly been changing. Description of the topcoding mechanism is available at
https://cps.ipums.org/cps/topcodes_tables.
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Table 1: Fractions and Numbers of Censored Observations in the 2019 CPS Dataset

n cen% cen# n cen% cen#

full sample 115424 0.582 672

racengender male female

all 55553 0.884 491 59871 0.302 181

white 43371 0.966 419 45424 0.310 141







in the Appendix.

2 The Maximum Likelihood Estimator

Consider a random sample fYigni=1



of one of the three limit laws. The parameter � is referred to as the tail index, which is

uniquely determined by F





and hence researchers typically choose a su¢ ciently small k to retain the asymptotic zero

mean. This is similar in spirit to the undersmoothing in standard kernel regressions.

In practice, it makes no di¤erence, at least asymptotically, between treating Tn as con-

stant and the number of censored observations m as stochastic and the opposite treatment.



inffy : 1 � p � F (y)g. We set p = pn ! 0 to capture the extremeness. The estimator can

be constructed by inverting (2), that is,

Q̂ (1� pn) = un +
�̂

�̂

�
d�̂n � 1

�
;

where dn = (m+ k) = (pnn). To derive a non-trivial asymptotic result, we let d0 �
limn→∞ dn > 0 so that the target quantile is of the same or larger magnitude of un (other-

wise it can be estimated by the corresponding empirical quantile). The following proposition

derives the asymptotic distribution of Q̂ (1� pn).

Proposition 2 Suppose Conditions 1-4 hold. If d0 > 0, then

k1=2 Q̂ (1� pn)�Q (1� pn)

�q� (dn)

d! N (0;�)

where q� (t) = �−1t� log t and

� =

 
1;

d�0 � 1

�q� (d0)

!
M−1

 
1;

d�0 � 1

�q� (d0)

!|
+ q� (d0)−2 :

Proposition 2 establishes the asymptotic normality of the extreme quantile estimator.

Then the conÖdence intervals for � and Q (1� pn) can be constructed by plugging in the

estimators for the asymptotic variance.

3 Small Sample ModiÖcation under the Fixed-k As-

ymptotics

The results in Section 2 suggest that the asymptotic normal approximation can be used for

inference about the tail features as k goes to 1. In practice, however, the choice of the tail

sample size k is widely accepted as a challenging question even without censoring. This is

because a good selection of k has to balance the tail approximation bias and the variance

delicately. Ultimately, the underlying distribution has to be reasonably close to the Pareto

distribution in the tail to guarantee a satisfactory Önite sample performance.

The asymptotic approximation can be quite accurate for some cases, but it is also easy to

Önd examples where the limiting normal distribution provides a poor approximation. Con-

10



sider the example that F is a mixture of the standard normal distribution with probability

0.8 and some Pareto distribution with probability 0.2. Such a mixture structure implies

that only the very few largest observations are informative about the true tail. In this case,

choosing a large k means including too many contaminating observations from the mid-

sample, while choosing a small k invalidates the asymptotic Gaussianity. In principle, there

is no such a procedure that consistently justiÖes whether a given k is appropriate when F

is entirely unknown. See Theorem 5.1 in Müller and Wang (2017) for a discussion on the

non-censored case.

Therefore, in this article, we do not focus on the choice of k but instead treat it as given.

In some cases, k is determined by some economic theory or empirical guidance. For example,

in the macroeconomic disaster application, the economic deÖnition of disasters for more than

10% of GDP decline yields the choice of k. In other cases, we may employ some data-driven

algorithms that balance the Pareto approximation bias and the variance. See, for example,

Hall (1982), Drees (2001), and Clauset, Shalizi, and Newman (2009).

When k and n=k are both su¢ ciently large, we would expect the MLE in (5) based

on the increasing-k asymptotics to work well. Nevertheless, k is only moderate in some

situations, including our macroeconomic disaster application and the Asian male subsample

in CPS. This causes a small sample issue that the asymptotic Gaussianity is questionable.

To Önd a better alternative, we resort to the asymptotic embedding that requires n diverges,

but k remains a Öxed constant. Under this Öxed-k asymptotic framework, the consistent

estimation of the tail index and the extreme quantiles are out of the question since the tail

sample size is Öxed. Fortunately, inference about these tail features is still implementable,

as we discuss in this section.

We Örst study the tail index �. EV theory (the FisherñTippettñGnedenko theorem)

suggests that when the underlying distribution is within the maximum domain of attraction

(e.g., Chapter 1 of de Haan and Ferreira (2007)), the sample maximum is asymptotically

distributed as the EV distribution, which is parametric and entirely characterized by �.

SpeciÖcally, our Condition 2 is su¢ cient for the maximum domain of attraction assumption.

Then, EV theory implies that there exist sequences of constants an and bn such that, up to

some location and scale normalization,

Y(1) � bn
an

d! X1; (6)
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where the CDF of X1 is given by

V�(x) =

(
1� exp

�
�



If the constants an and bn were known, the vector

Y =
�
Y(m+1); : : : ; Y(m+k)

�|
is then approximately distributed as X, and the limiting problem is reduced to the small

sample parametric one: constructing a conÖdence interval based on one draw X whose

density fX|� is known up to �. However, an and bn respectively correspond to the scale � and

the tail location u. Therefore, they ultimately depend on F and are challenging to estimate.

Consider the standard Pareto distribution, for example. The Pareto exponent � is simply

1=�. Then the fact that an = n� implies that a small estimation bias in � could be ampliÖed

by the n-power and lead to a poor inference.

To avoid the knowledge (and estimation) of an and bn, we consider the following self-

normalized statistics:

Y∗ =
Y � Y(m+k)�k
Y(m+1) � Y(m+k)

(10)

=

�
1;
Y(m+2) � Y(m+k)

Y(m+1) � Y(m+k)

; :::;
Y(m+k−1) � Y(m+k)

Y(m+1) � Y(m+k)

; 0

�|
:

It is easy to establish that Y∗ is maximal invariant with respect to the group of location and

scale transformations (cf. Chapter 6 of Lehmann and Romano (2005)). In words, the statistic

constructed as a function of Y∗ remains unchanged if data are shifted and multiplied by any

non-zero constant. This invariance is also intuitive since the tail shape should preserve no

matter how data are linearly transformed.

The continuous mapping theorem and Proposition 3 yield that

Y∗
d! X∗ =

�
1;
Xm+2 �Xm+k

Xm+1 �Xm+k

; :::;
Xm+k−1 �Xm+k

Xm+1 �Xm+k

; 0

�|
; (11)

which is again invariant to location and scale transformation. By change of variables, the

density of X∗ is given by

fX�|� (x∗) =
� (k +m)

m!

Z ∞
0

sk−2 exp

�
�m
�

log (1 + �s)

�
e (x∗; s) ds; (12)

where e (x∗; s) = exp
�
�(1 + 1=�)

Pk
i=1 log(1 + �x∗i s)

�
and x∗i denotes the ith component of

x∗. See Appendix A.1 for more details.
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P (Q (1� pn) 2 S(Y)) � 1� lv, at least as n!1, where lv denotes the signiÖcance level.

To eliminate an and bn, we use the self-normalized vector Y∗ as in (12). Besides, we also

impose location and scale equivariance on our conÖdence interval S. SpeciÖcally, we impose

that for any constants a > 0 and b, our interval S satisÖes that S(aY + b) = aS(Y) + b,

where aS(Y)+ b = fy : (y� b)=a 2 S(Y)g. Under this equivariance constraint, we can write

P(Q (1� pn) 2 S(Y)) = P
�
Q (1� pn)� bn

an
2 S

�
Y � bn�k

an

��
= P

�
Q (1� pn)� Y(m+k)

Y(m+1) � Y(m+k)

2 S (Y∗)

�
! P�

�
q(�; h)�Xm+k

Xm+1 �Xm+k

2 S(X∗)

�
;

where the notation P� (and E� below) indicates that the randomness is entirely characterized

by � asymptotically. The asymptotic problem then is the construction of a location and scale

equivariant S that satisÖes

P�
�
q(�; h)�Xm+k

Xm+1 �Xm+k

2 S(X∗)

�
� 1� lv for all � 2 � (14)

since any S that satisÖes Proposition 3 and the equivariance constraint also satisÖes

lim inf
n→∞

P(Q (1� pn) 2 S(Y)) � 1� lv:

This problem involves a single observation X 2 Rk from a parametric distribution indexed

only by the scalar parameter � 2 �.

In principle, there could still be many solutions that satisfy the asymptotic size constraint.

To obtain the optimal one, we consider the weighted average expected length criterionZ
E�[lgth(S(X))]dW (�), (15)

where W again denotes some weighting measure on �, and lgth(A) =
R

1[y 2 A]dy for any

Borel set A � R.

To solve the program of minimizing (15) subject to (14) among all equivariant set esti-

mators S, we introduce

Y ∗(�) =
q(�; h)�Xm+k

Xm+1 �Xm+k

;
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4 Monte Carlo Simulations

This section examines the Önite sample performance of the proposed method and compares

it with several popular existing methods. We generate random samples from four commonly

used distributions: the generalized Pareto distribution with � = 0:5 and � = 1 (GPD),

the absolute value of the Student-t distribution with 2 degrees of freedom (jt(2)j), the F

distribution with parameters 4 and 4 (F(4,4)), and the double Pareto-lognormal distribution

(dPlN), that is,

Y = exp (c1 + c2Z1 + �Z2 � c3Z3) ;

where Z1, Z2, Z3 are independent and Z1 � N(0; 1), and Z2; Z3 � Exp(1). For parameter

values, we set c1 = 0, c2 = 0:5, � = 0:5, and c3 = 1, which are typical values for income

data as documented in Toda (2012). In particular, the dPlN distribution is the product of

independent double Pareto and lognormal variables. It has been documented to Öt well to

size distributions of economic variables including income (Reed (2003)), city size (Giesen,

Zimmermann, and Suedekum (2010)), and consumption (Toda (2017)). In all four DGPís,

the true value of the tail index is 0.5. Regarding the tail censoring, we set the censoring

threshold T



Table 2: Small Sample Properties of Estimation and Inference about Tail Index, Igorning

Tail Censoring

cen_p 1% 0:1%

Bias Cov Bias Cov

n=1000 Hill GI Hill GI Hill GI Hill GI

GPD -0.18 -0.24 0.03 0.00 -0.04 -0.07 0.88 0.89

t(2) -0.16 -0.23 0.10 0.00 -0.02 -0.06 0.93 0.93

F(4,4) -0.12 -0.20 0.39 0.05 0.03 -0.03 0.98 0.98

dPlN -0.17 -0.24 0.05 0.00 -0.04 -0.04 0.89 0.90

n=2000 Hill GI Hill GI Hill GI Hill GI

GPD -0.18 -0.24 0.00 0.00 -0.04 -0.07 0.85 0.81

t(2) -0.16 -0.23 0.00 0.00 -0.02 -0.06 0.93 0.86

F(4,4) -0.12 -0.20 0.12 0.00 0.03 -0.03 0.97 0.97

dPlN -0.17 -0.24 0.00 0.00 -0.04 -0.04 0.88 0.82

n=5000 Hill GI Hill GI Hill GI Hill GI

GPD -0.18 -0.24 0.00 0.00 -0.04 -0.08 0.73 0.45

t(2) -0.16 -0.23 0.00 0.00 -0.02 -0.07 0.90 0.63

F(4,4) -0.12 -0.20 0.00 0.00 0.03 -0.03 0.93 0.95

dPlN -0.17 -0.24 0.00 0.00 -0.03 -0.08 0.77 0.47

Note: Entries are the biases and coverage probabilities (Cov) of the 95% conÖdence intervals based on

Hillís estimator (Hill) and Gabaix and Ibragimov (2010)ís estimator (GI). Data are generated from the

Pareto(0.5), the absolute value of Student-t(2), the F(4,4), and the dPIN distributions with the censored

probability (cen_p) being 1% or 0.01%. The results are based on 1000 simulations.

Now we implement the new method proposed in Sections 2 and 3. Table 3 depicts

the coverage and length of the 95% maximum likelihood conÖdence intervals (denoted ml)

based on Proposition 1 and those of the Öxed-k intervals (denoted fk) by inverting (13).

Several interesting Öndings can be made as follows. First, the maximum likelihood conÖdence

intervals are substantially longer than the Öxed-k ones when the sample size is not large.

Besides, the coverage probability is smaller than the nominal level when the censoring is at

the 99.9% quantile. This is because the asymptotic normality cannot perform well when

k is not large. Second, in comparison, the Öxed-k ones always deliver the nominal size

with shorter length, especially when the sample size is not large. Finally, when n reaches
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5000 (and k reaches 250), the maximum likelihood intervals are comparable with the Öxed-k

ones. Hence a simple rule-of-thumb choice of the switching cuto¤ is k 7 250, provided n is

su¢ ciently large.

Table 3: Small Sample Properties of Inference about Tail Index

cen_p 1% 0:1%

Cov Lgth Cov Lgth

n=1000 ml fk ml fk ml fk ml fk

GPD 0.98 0.93 1.39 0.73 0.91 0.95 0.88 0.70

t(2) 0.98 0.94 1.40 0.73 0.90 0.95 0.87 0.70

F(4,4) 0.99 0.93 1.39 0.73 0.90 0.95 0.87 0.70

dPlN 0.99 0.93 1.30 0.73 0.90 0.94 0.87 0.70

n=2000 ml fk ml fk ml fk ml fk

GPD 0.96 0.94 0.99 0.69 0.93 0.94 0.63 0.58

t(2) 0.96 0.93 0.99 0.69 0.92 0.93 0.62 0.58

F(4,4) 0.96 0.94 0.99 0.69 0.93 0.94 0.63 0.58

dPlN 0.96 0.94 0.99 0.69 0.92 0.93 0.62 0.58

n=5000 ml fk ml fk ml fk ml fk

GPD 0.97 0.94 0.63 0.54 0.95 0.94 0.40 0.39

t(2) 0.96 0.94 0.62 0.54 0.93 0.92 0.40 0.38

F(4,4) 0.97 0.95 0.63 0.54 0.94 0.93 0.40 0.38

dPlN 0.96 0.93 0.62 0.54 0.94 0.94 0.40 0.38

Note: Entries are the coverage probabilities (Cov) and the averaged length (Lgth) of the maximum likelihood

intervals (ml) and the Öxed-k intervals (fk) for the tail index. Data are generated from the Pareto(0.5), the

absolute value of Student-t(2), the F(4,4), and the dPIN distributions with the censored probability (cen_p)

being 1% or 0.01%. The results are based on 1000 simulations. The level of signiÖcance is 5%.

Tables 4 depicts the coverage probabilities and lengths of the conÖdence intervals of the

99% quantile, using either the maximum likelihood method as in Proposition 2 or the Öxed-

k method (17). Both methods deliver satisfactory size and length properties, although the

maximum likelihood intervals su¤er from slight undercoverage. However, as we target the

more extreme 99.9% quantile as in Table 5, such undercoverage is substantial when k is less

than 250. In contrast, the Öxed-k ones always perform excellently. These results reinforce

our switching cuto¤ at k = 250.
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Table 4: Small Sample Properties of Inference about the 0:99 Quantile

cen_p 1% 0:1%

Cov Lgth Cov Lgth

n=1000 ml fk ml fk ml fk ml fk

GPD 0.95 0.94 6.71 7.09 0.91 0.96 4.83 5.79

t(2) 0.95 0.94 6.73 7.13 0.91 0.94 4.87 5.89

F(4,4) 0.94 0.94 11.67 12.17 0.91 0.95 8.32 9.91

dPlN 0.95 0.94 4.92 5.25 0.91 0.95 3.54 4.37

n=2000 ml fk ml fk ml fk ml fk

GPD 0.96 0.94 4.60 4.86 0.92 0.96 3.38 3.88

t(2) 0.96 0.94 4.60 4.76 0.93 0.96 3.43 3.89

F(4,4) 0.96 0.95 8.04 8.09 0.92 0.95 5.85 6.72

dPlN 0.96 0.94 3.44 3.50 0.93 0.96 2.52 2.90

n=5000 ml fk ml fk ml fk ml fk

GPD 0.97 0.96 2.85 2.93 0.93 0.94 2.12 2.38

t(2) 0.97 0.95 2.84 2.91 0.94 0.96 2.15 2.40

F(4,4) 0.97 0.95 4.93 5.05 0.93 0.94 3.68 4.10

dPlN 0.97 0.95 2.08 2.12 0.93 0.96 1.57 1.77

Note: Entries are the coverage probabilities (Cov) and the averaged length (Lgth) of the maximum likelihood

intervals (ml) and the Öxed-k intervals (fk) for the 99% quantiles. Data are generated from the Pareto(0.5),

the absolute value of Student-t(2), the F(4,4), and the dPIN distributions with the censored probability

(cen_p) being 1% or 0.01%. The results are based on 1000 simulations. The level of signiÖcance is 5%.
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Table 5: Small Sample Properties of Inference about the 0:999 Quantile

cen_p 1% 0:1%

Cov Lgth Cov Lgth

n=1000 ml fk ml fk ml fk ml fk

GPD 0.86 0.92 128.9 102.6 0.83 0.95 61.68 75.08

t(2) 0.85 0.93 123.0 103.1 0.83 0.94 60.87 72.62

F(4,4) 0.85 0.91 226.8 178.1 0.83 0.95 106.3 130.8

dPlN 0.85 0.93 93.16 78.21 0.82 0.95 45.16 55.13

n=2000 ml fk ml fk ml fk ml fk

GPD 0.89 0.92 79.20 72.25 0.87 0.94 39.71 44.91

t(2) 0.88 0.94 75.60 71.65 0.88 0.95 39.32 45.96

F(4,4) 0.89 0.92 136.6 126.5 0.88 0.93 69.35 80.28

dPlN 0.88 0.92 56.17 51.48 0.87 0.93 28.99 32.38

n=5000 ml fk ml fk ml fk ml fk



5.1 US Individual Earnings

Our Örst application is about the tail features of the individual earnings distribution. Fol-

lowing the convention, we use the variable ERN_VAL in the March CPS dataset and drop

the individuals that are younger than 18 or older than 70 years old. This yields 115,424

observations in the 2019 sample. The censoring threshold is 310000 USD, which leads to

a 0.58% censoring fraction in the full sample and various censoring fractions in di¤erent

subsamples. The Örst several columns in Table 6 present the sample sizes (n) and the num-

bers (cen#) and the fractions (cen%) of the censored observations, respectively. We use the

previously introduced method to construct the 95% conÖdence intervals of the tail index

and the 99% and 99.9% quantiles. SpeciÖcally, we follow the simulation study to use the

maximum likelihood conÖdence intervals developed in Section 2 when k is larger than 250

and switch to the Öxed-k

6 present the results with k = [0: n]. The results based on other choices are similar and

reported in Appendix A.3.

Several interesting Öndings can be summarized as follows. First, in Panel A, the tail

index is around 0.5 in the full sample, as commonly found in the existing literature. But

it is substantially di¤erent across subsamples. Second, the tail also exhibits substantial

heterogeneity across genders. In particular, the male sample has signiÖcantly higher quantiles

than the female at both the 99% and 99.9% levels. Third, this di¤erence also exists across

races. In particular, the 99.9% quantile of all males is at least twice larger than that of the

black males. All such heterogeneity provides new evidence for potential racial and gender

discrimination. Finally, Panel B depicts the heterogeneity across ages, with substantially

heavier tails showing up in the middle-aged groups.
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Table 6: Empirical Results in 2019 March CPS Data

Panel A: 95% conÖdence intervals in race-and-gender-based subsamples

race-gender n cen# cen% tail index Q(0.99) Q(0.999)

full sample 115424 672 0.58 (0.41 0.52) (24.24 25.32) (62.63 75.61)

all males 55553 491 0.88 (0.35 0.53) (28.64 30.68) (67.71 92.58)

all females 59871 181 0.30 (0.42 0.55) (18.02 19.03) (46.34 58.01)

white males 43371 419 0.97 (0.88 1.00) (29.83 33.56) (145.2 279.0)

white females 45424 141 0.31 (0.42 0.57) (18.09 19.28) (46.56 60.66)

Asian males 3676 50 1.36 (0.00 0.45) (30.73 37.20) (48.03 86.76)

Asian females 4099 22 0.54 (0.35 0.94) (20.77 27.16) (45.12 145.0)

Hispanic males 44420 445 1.00 (0.71 0.95) (31.10 34.75) (119.3 214.0)

Hispanic females 48192 155 0.32 (0.47 0.62) (18.70 19.90) (50.17 66.13)

black males 6144 12 0.20 (0.22 0.58) (15.92 18.22) (28.73 49.39)

black females 7827 9 0.16 (0.16 0.44) (13.90 15.64) (25.25 37.18)

Panel B: 95% conÖdence intervals in age-based subsamples

age n cen# cen% tail index Q(0.99) Q(0.999)

18-30 27829 35 0.13 (0.33 0.49) (12.69 13.60) (28.16 36.16)

30-40 25213 158 0.63 (0.28 0.50) (24.12 26.36) (52.24 75.73)

40-50 23419 213 0.91 (0.83 1.00) (28.89 33.82) (119.7 297.2)

50-60 21767 196 0.90 (0.52 0.83) (28.19 32.21) (78.05 154.2)

60-65 17196 70 0.41 (0.17 0.41) (20.95 23.13) (41.86 59.31)

Note: Entries are the sample size (n), the number of censored observations (cen#), the censored fraction

in percentage points (cen%), 95% conÖdence intervals of the tail index and those of the 99% and 99.9%

quantiles measured in 104 USD. The results are based on the variable ERN_VAL in the CPS dataset and

equivalently the variable inclongj from the IPUMS dataset. Data are available at https://cps.ipums.org/cps.

5.2 Macroeconomic Disasters

This section studies the size distribution of macroeconomic disasters, which is an impor-

tant research topic in macroeconomics. Barro and Ursúa (2008) and Barro and Jin (2011)

construct and analyze the dataset that consists of annual GDP (and consumption) growth

rates in 36 countries from 1870 to 2005. The authors sort these observations and deÖne a

macroeconomic disaster if the GDP declines by more than 10%. This leads to k = 157 tail
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observations. Then the authors Öt these data to the (double) Pareto distribution to estimate

the Pareto exponent, which is the reciprocal of the tail index, and back out the coe¢ cient

of the relative risk aversion by a theoretical model (eq.2 in Barro and Jin (2011)).

However, the largest disasters tend to be missing because some governments collapsed or

were Öghting wars (p.1581 in Barro and Jin (2011)). Ignoring these missing data in the upper

tail could lead to substantial bias, as we show in the Monte Carlo simulations. We revisit

this problem by applying our Öxed-k method since k is only moderate. SpeciÖcally, the most

recent data missing happens in four countries, which are Greece, Malaysia, the Philippines,

and Singapore during WWII. Therefore, we set m = 4 and apply the Öxed-k method to

construct the 95% conÖdence intervals for the tail index � and those for the coe¢ cient of

relative risk aversion by solving eq.2 in Barro and Jin (2011). For comparison, we also

construct the intervals based on Hill (1975)ís estimator and the bias-reduced estimator (GI)

proposed by Gabaix and Ibragimov (2011). Table 7 presents the result.

As shown in the table, the Öxed-k intervals contain substantially larger values of the tail



6 Concluding Remarks

This paper develops a new approach to estimate and conduct inference about tail features

for censored data. The method can be viewed as a hybrid approach that uses the maximum

likelihood estimation when the tail sample size is large and switches to a small sample

modiÖcation otherwise. As shown in Monte Carlo simulations, the new method has excellent

small sample performance.

This new approach is empirically relevant in broad areas studying tail features (e.g., tail

index and extreme quantiles). We illustrate this with the March CPS data and the macro-

economic disaster data and Önd considerably di¤erent results from the existing literature.

There are theoretical extensions and empirical applications of our method, which we

suppress in the current paper due to space limitations. We list a few here. First, our

method naturally applies to the no censoring case by setting � =1 in the MLE and m = 0

in the Öxed-k method. Besides, we can follow Müller and Wang (2019) to construct the

(quantile) unbiased estimation of the tail features, which could perform better in terms of

mean absolute deviation and mean squared error, especially when k is not large.

Second, many other tail features can be learned by our new method as long as they can

be expressed as functions of the tail index. For example, the conditional tail expectation is

another important risk measure in Önance, which is deÖned as the expectation conditional on

being larger than some high quantile, that is, E [Y



Appendix

A.1 Computational Details

The estimators deÖned in Section 3 require evaluation of some expectations. DeÖne � (�) as

the Gamma function and � (a; x) =
R∞
x
ta−1e−tdt as the incomplete Gamma function. Also

deÖne e (x∗; s) = exp
�
�(1 + 1=�)

Pk
i=1 log(1 + �x∗i s)

�
. Change of variables and integration

by parts yield that

E� [Xm+1 �Xm+kjX∗ = x∗] fX�|� (x∗)

=
� (k +m� �)
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0
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�m
�

log (1 + �s)� (1 +
1

�
)

kX
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log(1 + �x∗i s)

!
ds:

and
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The tables of the Lagrange multipliers and the corresponding MATLAB code are provided

on our website: https://sites.google.com/site/yulongwanghome/.

A.2 Proof

To prove Proposition 1, we Örst establish two intermediate results, Lemmas 1 and 2.
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where recall � (u) = u−�. Use the change of variable � = u=� and recall � = 1=�. Then by
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To this end, it su¢ ces to show that E[j@3li(~�; ~�)=@�3jjYi > u], E[j�@3li(~�; ~�)=@�2@�jjYi > u],

E[j�3@3li(~�; ~�)=@�3jjYi > u], and E[�2j@3li(~�; ~�)=@�2@�jjYi > u] are all uniformly bounded

over this neighborhood. This is done by straightforward calculations as we show in Lemma

3. For brevity, we present
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We next derive the limits of Cjn for j = 1; 2; 3; 4. To this end, we deÖne U (t) = Q(1� 1=t)

and denote U ′(t) = @U(t)=@t. We introduce the second-order tail approximation that

lim
t→∞

U(ty)−U(t)
a(t)

� y�−1
�

A(t)
= H(y) (26)



Proof of Proposition 3 We prove this by induction. By standard EVT, for any Öxed

positive integer I,

fX1;:::;XI |�(x1; : : : ; xI) = V� (xI)
IQ
i=1

v� (xi) =V� (xi) : (27)

Consider m = 1 Örst. For any Öxed positive integer k, (27) with I = k + 1 implies that
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which satisÖes (9).
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Table 8: Empirical Results Using 2019 March CPS Data

Panel A: 95% conÖdence intervals with race-based subsample

n cen# cen% tail index Q(0.99) Q(0.999)

Full Sample 115424 672 0.58 (0.37 0.49) (24.26 25.32) (59.88 73.00)

Male 55553 491 0.88 (0.39 0.62) (28.76 30.97) (71.86 106.3)

Female 59871 181 0.30 (0.30 0.44) (18.31 19.33) (42.46 52.03)

Male White 43371 419 0.97 (0.09 0.34) (29.57 31.84) (54.54 75.61)

Female White 45424 141 0.31 (0.29 0.45) (18.40 19.59) (42.36 53.68)

Male Asian 3676 50 1.36 (0.00 0.55) (30.73 37.77) (48.30 109.6)

Female Asian 4099 22 0.54 (0.13 0.76) (21.27 26.66) (42.89 104.5)

Male Hispanic 44420 445 1.00 (0.11 0.36) (29.98 32.27) (55.56 77.78)

Female Hispanic 48192 155 0.32 (0.38 0.55) (18.83 19.99) (45.77 59.36)

Male Black 6144 12 0.20 (0.16 0.53) (16.06 18.55) (29.70 47.84)

Female Black 7827 9 0.16 (0.12 0.44) (13.94 15.72) (25.08 36.81)

Panel B: 95% conÖdence intervals with age-based subsample

Age n cen# cen% tail index Q(0.99) Q(0.999)

18-30 27829 35 0.13 (0.34 0.53) (12.63 13.54) (28.42 37.19)

30-40 25213 158 0.63 (0.24 0.51) (24.15 26.40) (50.57 75.56)

40-50 23419 213 0.91 (0.00 0.32) (28.67 31.48) (48.07 71.41)

50-60 21767 196 0.90 (0.63 1.00) (28.30 32.89) (86.35 218.9)

60-65 17196 70 0.41 (0.43 0.76) (20.29 22.63) (49.71 88.34)

Note: Entries are the sample size (n), the number of censored observations (cen#), the

censored fraction in percentage points (cen%), 95% conÖdence intervals of the tail index

and those of the 99% and 99.9% quantiles measured in 104 USD. The results are based on

k = [0:04n] and the variable ERN_VAL in the CPS dataset (and equivalently the variable

inclongj from the IPUMS dataset). Data are available at https://cps.ipums.org/cps.
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Table 9: Empirical Results Using 2019 March CPS Data

Panel A: 95% conÖdence intervals in race-based subsamples

n cen# cen% tail index Q(0.99) Q(0.999)

Full Sample 115424 672 0.58 (0.31 0.40) (24.33 25.34) (56.01 65.09)

Male 55553 491 0.88 (0.30 0.45) (28.59 30.52) (63.88 82.90)

Female 59871 181 0.30 (0.43 0.54) (18.03 19.05) (46.57 57.68)
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