* ** **

Abstract

*

1 Introduction

2 Literature review

leverage e¤ect

between inventories and prices

leverage crude oil spot market

3.1 Descriptive statistics

Q

		9 7:33		5 495:16	-
			12:75		
0:12			0:01		0:08
4 1:35		4 1:73		5:86	2:68
			0:00		
0:00	0:01	0:00	00:0	00:0	00:0
00:0	0:00	0:00	0:00	0:0	0:03

Descriptive Statistics and P-values for the daily futures returns and realised variance for daily futures returns and realized variance 2001-2016 Test Statistics and P-values for the daily futures returns and realised variance for daily futures returns and realised variance 2001-2016

4 Estimation method

Realized Variance

Integrated Variance

t [*t k*; *t*]

 $r(t;k) = \ln F$

$$dp = d\ln(F)$$

$$= \frac{P}{V} dW_1 + xdPoisson(t)$$

$$dV = (V) dt + \frac{P}{V} dW_2$$

$$E(dW_1 dW_2) = dt$$

$$x N 0;$$

0h@0gihaf0Heb md[((del,)-333(hee)-333(ae)-333()28()/(()>332(V

leverage e¤ect

inverse leverage e¤ect

4.4 Stochastic Volatility model (SV)

= 0; = 0 = 0

J

е1 **е**2

	1 <i>:</i> 507***	0:0869***	0:0424***	0 <i>:</i> 227***
	(5 <i>:</i> 87)	(4 <i>:</i> 58)	(2:92)	(29 <i>:</i> 99)
	0:00398***	0:00994***	0 <i>:</i> 00649***	0 <i>:</i> 00376***
	(8 <i>:</i> 41)	(12 <i>:</i> 56)	(5 <i>:</i> 55)	(15 <i>:</i> 69)
	0 <i>:</i> 283***	0:338***	0 <i>:</i> 249***	0 <i>:</i> 12015172***
	(6 <i>:</i> 55)	(19 <i>:</i> 62)	(17 <i>:</i> 96)	(54 <i>:</i> 75)
		0 <i>:</i> 979		0 <i>:</i> 156923006***
		(0 <i>:</i> 38)		(10 <i>:</i> 09)
		0 <i>:</i> 0159		0 <i>:</i> 038120618***
		(0 <i>:</i> 77)		(30 <i>:</i> 60)
			0 <i>:</i> 379***	0:490***
			(11 <i>:</i> 29)	(29 <i>:</i> 11)
Ν	3708			

GMM estimates for the SV, SVJ, SVL, SVJL models for the S&P500 futures: 09/2001–06/2016

p* < 0:10; *p* < 0:05;*** *p* < 0:01

GMM estimates for the SV, SVJ, SVL, SVJL models for Natural Gas futures: 09/2001–06/2016

	0 <i>:</i> 923**	0:772***	0:760***	0 <i>:</i> 0556*
	(2 <i>:</i> 19)	(4 <i>:</i> 11)	(3 <i>:</i> 45)	(1 <i>:</i> 75)
	0:0483***	0 <i>:</i> 0568***	0 <i>:</i> 0460***	0 <i>:</i> 0545***
	(4 <i>:</i> 36)	(6 <i>:</i> 15)	(5 <i>:</i> 60)	(4 <i>:</i> 97)
	1 <i>:</i> 139**	1 <i>:</i> 041***	0 <i>:</i> 925***	0 <i>:</i> 24293***
	(2 <i>:</i> 33)	(6 <i>:</i> 23)	(3 <i>:</i> 49)	(3 <i>:</i> 82)
		0 <i>:</i> 0101***		0 <i>:</i> 04345***
		(4:03)		(18 <i>:</i> 52)
		0 <i>:</i> 932***		0 <i>:</i> 97814
		(32 <i>:</i> 63)		(0 <i>:</i> 53)
			0 <i>:</i> 201***	0 <i>:</i> 0495**
			(4 <i>:</i> 57)	(2 <i>:</i> 14)
N	3708			

p* < 0:10; *p* < 0:05;*** *p* < 0:01

0 <i>:</i> 117	0 <i>:</i> 0596*	0:0963*
(1 <i>:</i> 43)	(1 <i>:</i> 77)	(1 <i>:</i> 71)
0:0247***	0:0224***	0:0242***
(5 <i>:</i> 75)	(3 <i>:</i> 45)	(6 <i>:</i> 43)
0:176**	0:131***	0 <i>:</i> 162**
(2:04)	(2 <i>:</i> 60)	(2 <i>:</i> 50)
	0 <i>:</i> 0190**	
	(2:44)	
	0:439***	
	(39 <i>:</i> 24)	
		0 <i>:</i> 276***
		(3 <i>:</i> 64)
I 3708		

GMM estimates for the SV, SVJ, SVL models for WTI futures: $09/2001\mathchar`-06/2016$

 $p < 0.10^{**} p < 0.05^{***} p < 0.01$

5 Robustness check for subsamples

:440*** 0: 26:15) (:69)

N = 1699			
	0 <i>:</i> 137***	0 <i>:</i> 0871***	0 <i>:</i> 276***
	(13 <i>:</i> 27)	(5 <i>:</i> 55)	(3 <i>:</i> 87)
	0:00331***	0 <i>:</i> 0836***	0 <i>:</i> 0328***
	(16 <i>:</i> 47)	(11 <i>:</i> 69)	(8 <i>:</i> 33)
	0 : 0577***	0 <i>:</i> 5455***	0 <i>:</i> 343***
	(57 <i>:</i> 58)	(12 <i>:</i> 32)	(6 <i>:</i> 36)
	0 <i>:</i> 1325***	0 <i>:</i> 0966***	
	(7 <i>:</i> 37)	(26 <i>:</i> 15)	
	0:0364***	0 <i>:</i> 4921***	
	(24 <i>:</i> 70)	(48 <i>:</i> 64)	
	0:440***	0 <i>:</i> 0137**	0 <i>:</i> 262***
	(18 <i>:</i> 40)	(2 <i>:</i> 20)	(6 <i>:</i> 66)
N = 1990			
	0 <i>:</i> 188***	0:0434	
	(13 <i>:</i> 22)	(1 <i>:4</i> 616))	

GMM estimates for S&P500, Natural Gas and WTI futures before and after September 15, 2008 (Lehman Brothers bankruptcy)

6 Out-of-sample performance

0 <i>:</i> 08014	0 <i>:</i> 19278	0:07757	0 <i>:</i> 1104
0 <i>:</i> 26398	0 <i>:</i> 28523	0 <i>:</i> 26231	
0 <i>:</i> 34547	0 <i>:</i> 3652	0 <i>:</i> 33651	0 <i>:</i> 378
0 <i>:</i> 06134	0 <i>:</i> 12978	0:05884	0 <i>:</i> 07281
0 <i>:</i> 20573	0 <i>:</i> 22121	0:20444	
0 <i>:</i> 26411	0 <i>:</i> 28076	0 <i>:</i> 25676	0 <i>:</i> 27043

0 <i>:</i> 00447	0 <i>:</i> 013848	0:004074	0:003308
0:021026	0:019163	0 <i>:</i> 020501	
0 <i>:</i> 066412	0:072497	0 <i>:</i> 057729	0:03341
0 <i>:</i> 003215	0 <i>:</i> 005822	0:002886	0:002195
0 <i>:</i> 015708	0:014377	0 <i>:</i> 015325	
0:041425	0:046088	0 <i>:</i> 037161	0 <i>:</i> 023585

6.2 Diebold-Mariano test

4 <i>:</i> 80	0:03	E 00					
1.00	0.00	5 <i>:</i> 20	0 <i>:</i> 39	6 <i>:</i> 07	0 <i>:</i> 81	17 <i>:</i> 64	0 <i>:</i> 96
0 <i>:</i> 66	0 <i>:</i> 42	0 <i>:</i> 97	0 <i>:</i> 97	1 <i>:</i> 31	1 <i>:</i> 00	12 <i>:</i> 81	1 <i>:</i> 00
0.09	0 <i>:</i> 76	21 <i>:</i> 50	0:00	31 <i>:</i> 89	0:00	5 <i>:</i> 59	1 <i>:</i> 00
0.05	0 <i>:</i> 83	27 <i>:</i> 44	0:00	36 <i>:</i> 50	0:00	0 <i>:</i> 67	1 <i>:</i> 00
0 <i>:</i> 38	0 <i>:</i> 54	6 <i>:</i> 07	0 <i>:</i> 30	7 <i>:</i> 38	0 <i>:</i> 69	24 <i>:</i> 71	0 <i>:</i> 74
00:00	0 <i>:</i> 96	1 <i>:</i> 65	0 <i>:</i> 90	2 <i>:</i> 21	0 <i>:</i> 99	9 <i>:</i> 59	1 <i>:</i> 00
0 <i>:</i> 17	0 <i>:</i> 68	5 <i>:</i> 11	0 <i>:</i> 40	7 <i>:</i> 67	0 <i>:</i> 66	23 <i>:</i> 01	0 <i>:</i> 81
0 <i>:</i> 27	0 <i>:</i> 61	4 <i>:</i> 30	0 <i>:</i> 51	5 <i>:</i> 96	0 <i>:</i> 82	22 <i>:</i> 44	0 <i>:</i> 84
0.01	0 <i>:</i> 93	0 <i>:</i> 04	1 <i>:</i> 00	0 <i>:</i> 10	1 <i>:</i> 00	20 <i>:</i> 19	0 <i>:</i> 91
0.01	0 <i>:</i> 93	0 <i>:</i> 04	1 <i>:</i> 00	0 <i>:</i> 10	1 <i>:</i> 00	18 <i>:</i> 55	0 <i>:</i> 95
0.01	0 <i>:</i> 94	0 <i>:</i> 04	1 <i>:</i> 00	0 <i>:</i> 10	1 <i>:</i> 00	22 <i>:</i> 97	0 <i>:</i> 82
0.01	0 <i>:</i> 93	0 <i>:</i> 04	1 <i>:</i> 00	0 <i>:</i> 10	1 <i>:</i> 00	19 <i>:</i> 40	0 <i>:</i> 93
0.05	0 <i>:</i> 83	0 <i>:</i> 06	1 <i>:</i> 00	0 <i>:</i> 25	1 <i>:</i> 00	19 <i>:</i> 37	0 <i>:</i> 93
0.01	0 <i>:</i> 92	0 <i>:</i> 05	1 <i>:</i> 00	0 <i>:</i> 11	1 <i>:</i> 00	13 <i>:</i> 84	0 <i>:</i> 99
6 <i>:</i> 68	0 <i>:</i> 01	7 <i>:</i> 15	0 <i>:</i> 21	11 <i>:</i> 43	0 <i>:</i> 32	22 <i>:</i> 10	0 <i>:</i> 85
4.05	0 <i>:</i> 04	4 <i>:</i> 37	0 <i>:</i> 50	4 <i>:</i> 29	0 <i>:</i> 93	4 <i>:</i> 76	1 <i>:</i> 00
0.00	1 <i>:</i> 00	1 <i>:</i> 91	0 <i>:</i> 86	4 <i>:</i> 71	0 <i>:</i> 91	17 <i>:</i> 86	0 <i>:</i> 96
0 <i>:</i> 15	0 <i>:</i> 69	0 <i>:</i> 76	0 <i>:</i> 98	1 <i>:</i> 52	1 <i>:</i> 00	15 <i>:</i> 42	0 <i>:</i> 99
0.00	0 <i>:</i> 98	2 <i>:</i> 05	0 <i>:</i> 84	4 <i>:</i> 67	0 <i>:</i> 91	17 <i>:</i> 12	0 <i>:</i> 97
0 <i>:</i> 10	0 <i>:</i> 75	0 <i>:</i> 65	0 <i>:</i> 99	1 <i>:</i> 30	1 <i>:</i> 00	10 <i>:</i> 38	1 <i>:</i> 00
0.00	1 <i>:</i> 00	2 <i>:</i> 06	0 <i>:</i> 84	4 <i>:</i> 75	0 <i>:</i> 91	17 <i>:</i> 22	0 <i>:</i> 97
0:11	0 <i>:</i> 74	0 <i>:</i> 75	0 <i>:</i> 98	1 <i>:</i> 60	1 <i>:</i> 00	10 <i>:</i> 23	1 <i>:</i> 00

0:094	0 <i>:</i> 231	3 <i>:</i> 253	0 <i>:</i> 001	65 <i>:</i> 850	0 <i>:</i> 006
0 <i>:</i> 303	0:000	7 <i>:</i> 853	0 <i>:</i> 000	37 <i>:</i> 832	0 <i>:</i> 568
0 <i>:</i> 296	0:000	8 <i>:</i> 172	0 <i>:</i> 000	40 <i>:</i> 898	0 <i>:</i> 431
0 <i>:</i> 452	0:000	9 <i>:</i> 018	0 <i>:</i> 000	34 <i>:</i> 394	0 <i>:</i> 720
0 <i>:</i> 068	0 <i>:</i> 626	0 <i>:</i> 928	0 <i>:</i> 177	85 <i>:</i> 452	0:000
0 <i>:</i> 259	0:000	7 <i>:</i> 420	0:000	43 <i>:</i> 723	0 <i>:</i> 316
0 <i>:</i> 072	0 <i>:</i> 554	0 <i>:</i> 799	0 <i>:</i> 212	87 <i>:</i> 346	0:000
0 <i>:</i> 249	0:000	7 <i>:</i> 090	0:000	39 <i>:</i> 267	0 <i>:</i> 503
0 <i>:</i> 311	0:000	8 <i>:</i> 799	0:000	6 <i>:</i> 095	1 <i>:</i> 000
0 <i>:</i> 483	0:000	9 <i>:</i> 252	0:000	0 <i>:</i> 421	1 <i>:</i> 000
0 <i>:</i> 314	0:000	8 <i>:</i> 809	0:000	5 <i>:</i> 425	1 <i>:</i> 000
0 <i>:</i> 494	0:000	9 <i>:</i> 254	0:000	0 <i>:</i> 397	1 <i>:</i> 000
0 <i>:</i> 151	0 <i>:</i> 007	7 <i>:</i> 048	0:000	20 <i>:</i> 472	0 <i>:</i> 996
0 <i>:</i> 431	0:000	9 <i>:</i> 126	0:000	1 <i>:</i> 917	1 <i>:</i> 000
0 <i>:</i> 052	0 <i>:</i> 888	2 <i>:</i> 377	0:009	34 <i>:</i> 724	0 <i>:</i> 706
0 <i>:</i> 303	0:000	8 <i>:</i> 145	0:000	21 <i>:</i> 069	0 <i>:</i> 994
0 <i>:</i> 046	0 <i>:</i> 958	1 <i>:</i> 521	0 <i>:</i> 064	42 <i>:</i> 030	0 <i>:</i> 383
0 <i>:</i> 276	0:000	7 <i>:</i> 644	0:000	34 <i>:</i> 788	0 <i>:</i> 704
0276	0				

0	0	0	0	0	0
39	31	70	196	223	166
311	319	280	154	127	184
350	350	350	350	350	350

_

C)	0	0	0	0	0
	336	45	60	165	69	304
1		305	290	185	281	46
3	350	350	350	350	350	350

=

0	0	0	0
71	8	258	199
279	342	92	151
350	350	350	350

7 Forecasting VaR and CVaR

Stage 1 Backtesting the VaR and CVaR models

Failure Rate FR violation rate

= 5% = 1%

FRVaR

FRVaR

CVaR

b

FRV aR FRV aR

$$FRVaR = \frac{1}{T} \sum_{i=1}^{N} I(y < VaR)$$

$$FRVaR = \frac{1}{T} \sum_{i=1}^{N} I(y > VaR)$$

$$VaR \qquad VaRs$$

VaR

Downside : I =			V aR V aR
Upside : I =		y > y	

LR

T

 H_0 : FR =

LR

LR

LR

LR

b

LR

5% VaR 4:06% 1% VaR 7:32% 1% VaR 0:81% 1% VaR 0:81% 5% VaR 13:82% 1% VaR 13:82% 1% VaR 13:01% 5% VaR 13:01% 1% VaR 2:44% 1% VaR 2:44% 5% VaR 2:44% 5% VaR 2:44% 5% VaR 2:44%											
V aR V aR V aR V aR V aR V aR V aR V aR	LR				LR			p values	sər		
V aR V aR V aR V aR V aR V aR V aR V aR				LR			LR			LR	
V aR V aR V aR V aR V aR V aR V aR V aR	L	13:0%	0:69	0:24	*0	0:62	0:27	*0	0:51	0:23	0:93
v aR v aR v aR v aR v aR v aR v aR v aR	7:32% 0:81%	14:63% 6:50%	0:03* 0:96	0:24 0:96	*0 *0	0:27 0:83	0:27 0:83	*0 *0	0:6 0:9	0:23 0:9	0:02* 0:52
V aR V aR V aR V aR V aR V aR V aR V aR		6:50%	*0	0:03	*0	0:05	0:01	*0	0:06	0:51	0:45
V aR V aR V aR V aR V aR V aR V aR		8:13%	*0	0:14	0:14	0:01*	0:18	0:83	*0	0:13	0:30
V aR V aR V aR V aR V aR V aR	9:76%	11:382%	*0	0:03*	0:01*	0:61	0:10	0:73	*0	0:02*	0:02*
V aR V aR V aR V aR V aR V aR		3:252%	*0	0:83	0:05	0:01*	0:9	0;60	*0	0:96	0:12
V aR V aR V aR V aR V aR	5:69%	4:878%	*0	*0	*0	0:13	0:35	0:27	*0	*0	*0
V aR V aR V aR V aR	7:32%	8:94%	0:32	0:24	0:17	0:15	0:27	0:07	0:7	0:23	0:99
V aR V aR V aR	8:13%	11:38%	0:02*	0:13	0:01*	0:95	0:14	*0	0:21	0:18	0:63
V aR V aR	0:81%	5:69%	0:96	0:96	*0	0:83	0:83	*0	0:0	0:9	0:39
V aR	4:06%	4:06%	*0	0:03	0:03	0:01	0:01	0:01	0:13	0:51	0:51
		4:88%	0:32		0:7	0:15		0:95	0:6973		0:43
V aR 8:13%		6:50%	0:02*		0:40	0:14		0:4636	0:75		0:29
1% VaR 0:81%		1:63%	0:96		0:77	0:83		0:5223	0:9		0:8
V aR 2:44%		1:63%	0:01*		0:77	0:17		0:5223	0:75		0:8

levels	Out of : b	sample	CVaR	backtes	ting re	sults u CV aR	sing S	imulat	ted Vc	olatilit	ies at	di¤er	sample CVaR backtesting results using Simulated Volatilities at di¤erent nominal CV aR
			LR		> d	values		LR	~		٩	values	
٩						LR			LR			LR	
1:96%		1:6%	0:8%	11:4% 0.0%	0:91	0:57	* *	0:78	0:3	*0 *	0:8	0:0	0:57
0:38%	CV aR	3:2 % 0:8%	4:1% 0:8%	9:0% 5:7%	0:78	0:78 0:78	- *o	0:5	0:5	o *o	0:0	c:0	0:39
	CVaR	2:4%	2:4%	4:9%	0:04	0:042	*0	0:01	0:01	*0	0:7	0:7	0:47
1:96%	CV aR	0:11	0:02	0:04	*0	0:78	0:14	0:03	0:80	0:51	*0	0:92	0:26
	CVaR	0:14	0:06	0:07	*0	0:02*	*0	0:20	0:36	0:68	*0	0:03	*0
0:38%	CV aR	0:07	0:01	0:02	*0	0:50	0:01	0:14	0:00	0:70	*0	0:78	0:04
	CVaR	0:12	0:04	0:05	*0	*0	*0	0:10	0:51	0:27	*0	0:00	*0
1:96%		0:8%	0:8%	6:5%	0:6	0:57	*0	0:3	0:3	*0	0:9	0:9	0:5
	CV aR	4:1%	4:1%	7:3%	*0	0:26	*0	0:14	0:14	*0	0:13	0:51	0:26
0:38%	C V aR	%0	0:8%	3:2%	ΔN	0:78	*0	0:33	0:5	*0	٩N	0:9	0:1
	CVaR	1:6%	2:4%	4:1%	0:23	0:04	*0	0:1	0:01	*0	0:8	0:7	0:5
1:96%	CVaR	1:6%									3 26:	:01841	0 :V aR 3:

al risk **LR**

"non-superiority" S "non-superiority" S "non-superiority"

*

S

SVL vs SVJ

SVL vs SVJL

SVL vs SVJ

Out of sample RLF and FLF loss function approach applied to the models surviving the VaR Backtesting stage.

	0:01	0:01
1%	0	0
	0:02	0:01
5%	0:01	0:01
	<u>0:02</u>	0:11
1%	0	0
	0:03	0:07
5%	0	0

Out of sample RLF and FLF loss function approach applied to the models surviving the CVaR Backtesting stage

References

Appendix I: Realized Variance and Moment conditions

Realized Variance

Integrated Vari-

ance

8.1 No jumps

$$t$$
 [$t \ k; t$]
 $r(t; k) = \ln F \ \ln F_{-} = () d + () dW$

$$QV(t;k) = IV(t;k) = {2 \choose -} d$$

Realized Variance

$$RV(t;k;n) = \frac{\mathbf{X}}{\sum_{i=1}^{n} r \cdot t \cdot k + \frac{\mathbf{j}}{n}; \frac{1}{n}^{2}$$

 $RV(t; k; n) \rightarrow IV(t; k)$ n ! 1

I = ¹

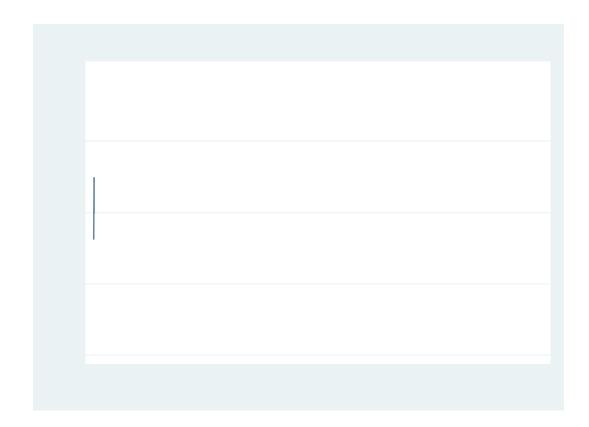
8.2 Jumps

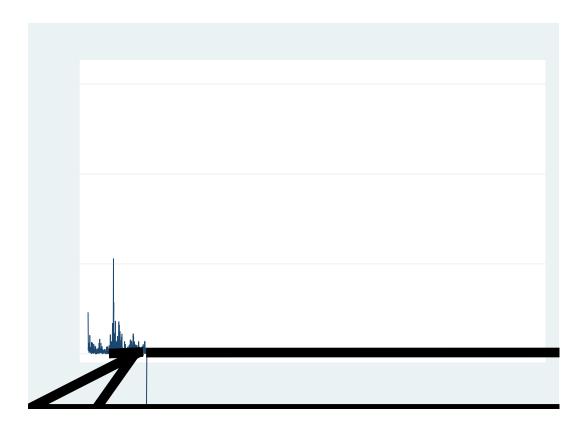
t [t k;t]

$$r(t;k) = \ln F \quad \ln F_{-}$$

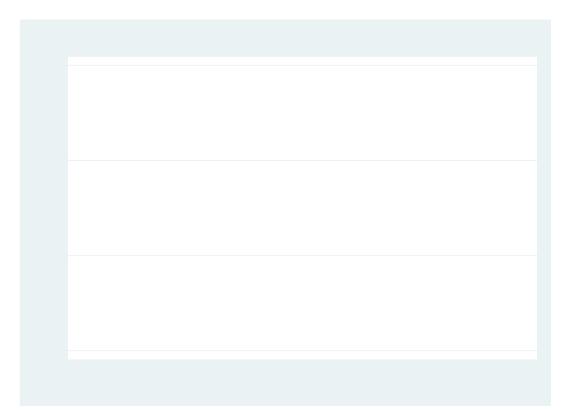
$$= ()d + ()dW + x()dN()$$

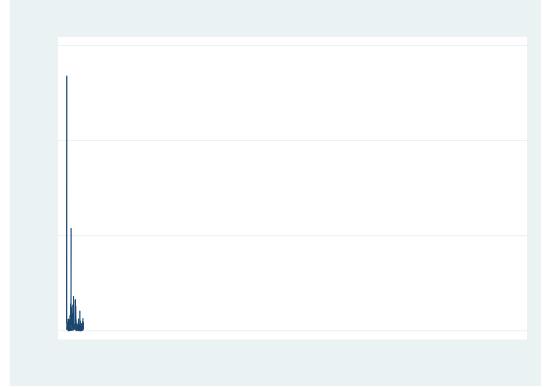
 $\boldsymbol{e}_{1} = \boldsymbol{E} [\boldsymbol{B}\boldsymbol{P}_{+1}\boldsymbol{j}\boldsymbol{G}] + {}^{2}\boldsymbol{d}\boldsymbol{t} \quad \boldsymbol{R}\boldsymbol{V}_{+1}$


$$\boldsymbol{E}[\boldsymbol{R}\boldsymbol{V}_{+1}\mathbf{j}\boldsymbol{G}] = \boldsymbol{E}[\boldsymbol{B}\boldsymbol{P}_{+1}\mathbf{j}\boldsymbol{G}] + {}^{2}\boldsymbol{d}\boldsymbol{t}$$


(A:3) Appendix A.1

Residual 2


$$e_2 = E[RV_{+1}]$$


 $E V_{+1}^{2} G$ V_{+1}^{2} Appendix II: Figures

Appendix III: t and J tests on the moment conditions

<u> </u>
ò
$\widetilde{\sim}$
001-06/201
S.
õ
Y
<u>–</u>
ò
R
\simeq
ñ
>
õ
0
i
ăź
Ľ
0 futures: 09/2001-06/2016
₽
5
Ļ
S&P500 fu
Q
0
വ
\cap
÷
∞
٢Ň
• •
Φ
õ
÷
Ē
0
÷
Θ
σ
\sim
\sim
ĕ
Ĕ
Ĕ
ĕ >
SV mo
SV mo
r SV mo
or SV mo
for SV mo
s for SV model for the S&P500 fu
ä
ä
ä
ä
ä
ä
ä
ä
estimates
ä
estimates
estimates

E[V +1 +2jG] V +1 +2	0:0052	0:00271	0:997841
E[V +1 +2V -16 -15jG] V +1 +2V -16 -15	0:0052	0:00844	0:993267
E[V +1 +2V -17 -16]G] V +1 +2V -17 -16	0:0052	0:05157	0:958872
E V $_{+1}^2$ + 2 V $_{+1}^2$ + 2	0:00851	0:00735	0:994135
E $V_{+1}^2 + V_{-10}^2 - 9$ G $V_{+1}^2 + 2V_{-10}^2 - 9$	0:00851	0:01141	0:9909
$E V_{+1}^2 V_{-2}^2 V_{-1}$			

E[V ₊₁ +2 j G] V ₊₁ +2		0:000068	0:999994	
[[V +1 +2V -16 -15]G]	V +1 +2V -16 -15	0:000068	0:999995	
E[V +1 +2V -17 -16]G]	V +1 +2V -17 -16	0:000068	0:999950	
$V_{+1}^{2} + C_{+1}^{2} + C_{+1}^{2} + C_{+1}^{2} + C_{+1}^{2}$		0:000865	0:999991	
E $V_{+1}^2 + \frac{1}{2}V_{-10}^2 = 0$ G V_{-10}^2	$V_{+1}^2 + 2V_{-10}^2 - 9$	0:000865	0:999930	
$E V_{+1}^2 + V_{-18}^2 - V_{-18}^2 G$	V_{+1}^2 +2 V_{-18}^2 -17	0:000865	0:999938	
E[V +1 j G] V +1		0:002765	0:999498	
$E V + {}^{-}_{1}BP^{2}_{-16} - {}^{-}_{15} G$	V $_{+1}BP_{-16}^{2}$ $_{-15}$	0:002765	0:999712	
$E V_{+1}BP_{-2}^2 = G V_{+1}$	V +1BP ² -2 -1	0:002765	0:993492	
$E V^{2}_{+1} G V^{2}_{+1}$		0:000559	0:999998	
	$^{12}_{+1}^{11} V_{-10}^{2}_{-10}^{-9}$	0:000559	0:999986	
$E V^{2}_{+1}BP^{2}_{-18} D^{2}_{-18} G$	$V^{2}_{+1}BP^{2}_{-18}$	0:000559	0:999803	
		$\frac{2}{7} = 6:96664$	0:4324	
-				

GMIM estimates for SVJ model for the S&P500 futures: 09/2001-06/2016

-	-	, -	0:99998	-	-	-	0:99998	-	-	-	05 0:999977	0:1919
0	0	0	0:000025	0	0	0	0:000025	0	0	0	2:9 E 05	11:177
0:0001	0:0001	0:0001	0:0001	0:000232	0:000232	0:000232	0:000232	0:00023	0:00023	0:00023	0:00023	700
E[V +1 +2jG] V +1 +2		+1 +2V -17 -16 JG] V +1 +2V -17 -16	+1 +2V -20 -19 j G] V +1 +2V -20 -19	V ² +1+1+1		+2 ^V ² -18 -17 G	$V_{+1}^2 + \frac{1}{2}V_{-22}^2 - \frac{1}{21} G V_{+1}^2 + \frac{1}{2}V_{-22}^2 - \frac{1}{21}$	+1V +1 +2 j G p +1V +1 +2	E $p_{+1}V_{+1} + 2p_{-15} - 14V_{-15}^2 = 14$ G	E p + 1V + 1 + 2V - 13 - 14V - 15 - 14 $E p + 1V + 1 + 2P - 12 - 11V - 12 - 11 G$ $p + 1V + 1 + 2P - 12 - 11V - 12 - 11 G$	E p $+1$ v $+1$ $+2$ r -12 -11 -12 -11 E p $+1$ V $+1$ $+2$ p -18 -17 V $\frac{2}{-18}$ -17 G p $+1$ V $+1$ $+2$ p -18 -17 V $\frac{2}{-18}$ -17	-,

GMM estimates for SVL model for the S&P500 futures: 09/2001-06/2016

V +1 +2	2:2 E	05		0	-
G	2:2 E	05		0	-
	2:2 E	05	2 E	90	0:999998
1 ² +1+2	3 E	90		0	, -
$V_{+1}^2 + V_{-10}^2 = 0$ G $V_{+1}^2 + V_{-10}^2 = 0$	3 E	90		0	-
$V_{+1}^2 + V_{-25}^2 + V_{-25}^4 = V_{+1}^2 + V_{-25}^4 + V_{-25}^2 + V_{-25}^4 + V_{-25$	3 E	90		0	, -
+1 V +1 +2	3 E	90		0	-
E [p +1V +1 +2p -15 -14V -15 -14j G]	3 E	90		0	~~
-	3 E	90		0	-
P +1 V +1 +2 P -12 -11 V -12 -11 E [V +1 j G] V +1	0:000021	021		0	-
$V_{+1}V_{-16}^{-}$ -15 G $V_{+1}V_{-16}^{-}$ -15	0:000021	021		0	-
$V_{+1}V_{-22}^{4}$ -21 G $V_{+1}V_{-22}^{4}$ -21	0:000021	021		0	-
V ² +1	3 E	90		0	-
$V^{2}_{+1}V^{2}_{-10} = 0$ G $V^{2}_{+1}V^{2}_{-10} = 0$	3 E	90		0	, 2 1
Ċ	3 E	06V +1	+	1∂ <	

GMM estimates for SVJL model for the S&P500 futures: 09/2001–06/2016

		0:005914	0:999994
$E[V_{+1} + 2V_{-16} - 15]G]$ $V_{+1} + 2V_{-16} - 15$	<pre>2 V +1 +2V -16 -15</pre>		0:999995
: [V +1 +2V -17 -16]G]	V +1 +2V -17 -16		0:99950
$V_{+1}^{2} + C_{+1}^{2} = V_{+1}^{2} + C_{+1}^{2}$	C+	-	166666:0
$V_{+1}^2 + V_{-10}^2 = 0$	$V_{+1}^2 + 2V_{-10}^2$	0:009844	0:99930
$V_{+1}^{2} + V_{-18}^{2} = V_{-17}^{2} G$	$V_{+1}^2 + 2V_{-18}^2 + 17$	0:009844	0:999938
[V +1]G] V +1		0:002155	0:999498
$E V _{+1}BP_{-16 -15}^{2} G$	V $_{+1}BP_{-16}^{2}$ $_{-15}^{-15}$	0:002155	0:999712
$V_{+1}BP_{-2}^{2}$ G	>	0:002155	0:993492
$\mathbf{V}_{+1}^{2} \mathbf{G}^{-1} \mathbf{V}_{+1}^{2}$		0:005225	0:999998
$V_{+1}^{2}V_{-10}^{2} = 0$	$V^{2}_{+1}V^{2}_{-10-9}$	0:005225	0:999986
$V^{2}_{+1}BP^{2}_{-18}$ G	$V^{2}_{+1}BP^{2}_{-18}$	0:005225	0:999803
ſ		$\frac{2}{7} = 5:81155$	0:5619
-			

GMM estimates for SVJ model for the Natural Gas futures: 09/2001–06/2016

E[V ₊₁ +2 j G] V ₊₁ +2	0:0058	0:00262	0:00262 0:997913
E[V +1 +2V -16 -15JG] V +1 +2V -16 -15	0:0058	0:00277	0:997792
E [V +1 +2V -17 -16]G] V +1 +2V -17 -16	0:0058	0:0678	0:945947
$E V_{+1}^2 + 2 G V_{+1}^2 + 2$	0:01161	0:01107	0:991166
E $V_{+1}^2 + \frac{1}{2}V_{-10}^2 - 9$ G $V_{+1}^2 + \frac{1}{2}V_{-10}^2 - 9$	0:01161	0:0099	0:992101
$E V_{+1}^{2} + \frac{1}{2}V_{-18}^{2} - \frac{1}{218} - \frac{1}{17} G V_{+1}^{2} + \frac{1}{2}V_{-18}^{2} - \frac{1}{17}$	0:01161	0:18512	0:853143
$E[p_{+1}V_{+1} + 2jG] p_{+1}V_{+1} + 2jG]$	0:00281	0:00116	0:999072
E [p +1V +1 +2p -15 -14V -15 -14 j G] p +1V +1 +2p -15 -14V -15 -14	0:00281	0:00544	0:995658
E [p +1V +1 +2p -18 -17V -18 -17j G] p +1V +1 +2p -18 -17V -18 -17	0:00281	0:02369	0:9811

GMM estimates for SVL model for the Natural Gas futures: 09/2001–06/2016

-

25

s futures:
Gas
- model for the Natural Gas futures: 09/2001
=
GMM estimates for SVJ

	0:00061	0:00029	0:999771
V_{+1} +2 V_{-10} -9	0:00061	0:00194	0:998452
V_{+1} +2 V_{-18}^{3} -17	0:00061	0:00024	0:999809
	0:00602	0:00574	0:995417
V^{2}_{+1} +2 V^{2}_{-10} -9	0:00602	0:14815	0:882232
V^{2}_{+1} +2 V^{4}_{-25} -24	0:00602	0:01217	0:99029
E [p +1V +1 +2jG] p +1V +1 +2	0:000105	0:00003	0:999976
E $\begin{bmatrix} p & +1V & +1 & +2p & -15 & -14V & -15 & -14j G \end{bmatrix}$ p $+1V + 1 & +2p & -15 & -14V & -15 & -14$	0:000105	0:000015	0:999988
/ _12 _11 j G] _12 _11	0:000105 0:0	0:000264	0:999789
E[V +1]G] V +1	0:052523 0:0	0:057867	0:953858
V +1V ⁻ -6 -5	0:052523 4:3	4:326995	0:000016
V +1V ⁴ _2 -1	0:052523 0:3	0:344424	0:730547
	0:00536 0	0:00157	0:998747
$^{+1}V_{-10}^{2}$	0:00536 0	0:00151	0:998795
V ² ₊₁ V ₋₁₈ -17	0:00536 0	0:00746	0:994051
	62	$\frac{2}{9} = 6:00869$	0:7390

M estimates for SV model for the WTI futures: 09/2001–06/2016
futures:
he WTI
nodel for t
for SV m
estimates
GMM 6

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

E[V +1 +2 j G] V +1 +2	0:000451	0:000017	0:000017 0:999987
E[V +1 +2V -19 -18jG] V +1 +2V -19 -18	0:000451	0:00002	0:999984
E[V +1 +2V -17 -16JG] V +1 +2V -17 -16	0:000451	0:000548	0:999563
E V_{+1}^2 + 2 G V_{+1}^2 + 2	0:001539	0:000007	0:999994
E $V_{+1}^2 + V_{-10}^2 = 0$ G $V_{+1}^2 + V_{-10}^2 = 0$	0:001539	0:000024	0:999981
E $V_{+1}^2 + V_{-18}^2 = V_{-17}^2$ G $V_{+1}^2 + V_{-18}^2 = V_{-17}^2$	0:001539	0:001058	0:999156
E $\begin{bmatrix} p & +1V & +1 & +2j \end{bmatrix} \begin{bmatrix} p & +1V & +2j \end{bmatrix} \end{bmatrix} \end{bmatrix} $	0:000108	0:000009	0:999995
E [p +1V +1 +2p -18 -17V -18 -17 j G] p +1V +1 +2p -18 -17V -18 -17	0:000108	0:000001	666666:0
E [p $+1$ V $+1$ $+2$ p -16 -15 V -16 -15 j G] p $+1$ V $+1$ $+2$ p -16 -15 V -16 -15	0:000108	0:00007	0:999923
	c		
ſ	5	1:37354	0:9272
L L			

GMM estimates for SVL model for the WTI futures: 09/2001–06/2016