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1 Introduction

Ten thousand children need to be allocated into ten schools, each accommo-
dating one thousand of them. The schools are not the same, and parents may
rank them in different ways. However, if all children are considered equal,
then a social lottery seems to be the best solution, where each student has an
equal chance to attend each of the ten schools.1 This procedure is egalitarian
— everyone gets the same lottery — and feasible. But is it efficient? Specifi-
cally, is there no other procedure such that ex-ante, before people know their
allocated school, they will get a better lottery?

If individual preferences over the schools are not the same, then this pro-
cedure may be inefficient — for example, if each school is ranked best by
exactly 1000 parents. It is true that if all individuals are expected utility
maximizers and have the same preferences over lotteries (and in particular,
over the schools), then this procedure leads to an efficient allocation. This is
also the case if all have the same quasi-concave preferences over lotteries. But
if preferences are quasi-convex, and a mixture of two indifferent lotteries is
inferior to the mixed lotteries, then we show that this proce





mixed. Most of the experimental literature that documents violations of
expected utility (e.g., Coombs and Huang [8]) found either preference for
randomization or aversion to it. Camerer and Ho [6] find support for quasi-
convexity over gains and quasi-concavity over losses. An example of behavior
that distinguishes between the two attitudes to mixture is the probabilistic
insurance problem of Kahneman and Tversky [17]. They showed that in
contrast with experimental evidence, any risk averse expected utility max-
imizer must prefer probabilistic insurance to regular insurance. Sarver [30]



like in standard expected utility, this inefficiency does not rely on cardinal
information which can be used to assess the intensity of preferences over
the basic goods, but on the ordinal property of the preferences over lotteries



That is, the average lottery faced by the participants is a uniform distribution
over the N goods. Obviously, this distribution is feasible. The sum of its
components must be 1, as the original lottery satisfies eq. (1). And if the
average lottery is not uniform, then the original allocation is not feasible as
it must violate eq. (2).

Any solution q specifies the probability distribution over final outcomes
for each individual. The Birkhoff–von Neumann Theorem ([4],[39]) guaran-
tees that for any q there is always a (social) lottery over all possible per-
mutations of the allocations of the final outcomes that induces the marginal
probabilities of q.3

2.1 Ex-Ante Efficiency

We first characterize solutions that are feasible, that is, satisfy equations (1)
and (2), and are ex-ante Pareto efficient, in the sense that there is no other
solution in which some individuals are strictly better off and no one is worse
off.4 As preferences are continuous over a compact domain, feasible efficient
allocations exist. We show that in such allocations, and without any further
assumptions on individuals’ preferences, all but ‘not too many’ individuals



xr ≻ xs ≻ xt and that they both receive lotteries with positive probabil-



This suggests a broader point. There are known results that imply the
equivalence of different randomized mechanisms and random serial dictator-
ship (Abdulkadiroğlu and Sönmez [3]; see also Pathak and Sethuraman [25]),
in the sense that they induce the same ex-ante probability distribution over
the final goods. But then those seemingly identical mechanisms are also typ-
ically ex-ante inefficient. If social planners know the individuals’ preferences
over lotteries, and in particular that they are strictly quasi-convex, they can
improve the agents’ welfare ex-ante.7 Importantly, this argument only relies
on simple, observable information: strict quasi-convexity of preferences and
the size of the supports of the lotteries that are used, rather than on the
intensity of preferences over the goods or the weights given to each of them
in the corresponding lotteries.8

While for exposition purposes we confine our attention to the case of strict
quasi-convex preferences, Theorem 1 generically also holds under expected
utility, which is linear (and hence also weakly quasi-convex) in probabili-
ties. Suppose all individuals are expected utility maximizers. Hylland and
Zeckhauser [16] use competitive equilibrium with equal incomes to show the
existence of a solution in which almost all agents receive a binary lottery.9

Our result holds without relying on any market mechanism.
Also assuming expected utility, Bogomolnaia and Moulin [5] show how

random serial dictatorship, which uses uniform distribution to rank agents, is
not necessarily even ordinally efficient; it may induce for each agent a distri-
bution over the goods that is stochastically dominated, with respect to that
agent’s ordinal preferences, by another feasible distribution. Their suggested

7Note that we ignore here the question of strategy-proofness, that is, how to guarantee
that agents truly reveal their preferences. We are instead focusing only on the properties
of the induced allocation (of lotteries) for any given set of preferences.

8Abdulkadiroğlu, Che, and Yasuda [2] point out that cardinal information allows the



probabilistic serial mechanism (which is ordinally efficient) is typically not
ex-ante efficient. It is also worth noting that their solution implies that agents
with the same ordinal preferences must receive the same lottery over goods.
In our case, even if all agents have the same cardinal preferences (and are
strictly quasi-convex), necessarily not all of them receive the same lottery, as
otherwise, the same binary lottery to all will not allocate all available goods.

2.2 Same Preferences

When all individuals have the same preferences, it is natural to require that



outcomes that can simultaneously be used. Note that many individuals may
hold the same binary lottery, but only one individual can hold any non-binary



characterizing allocations that are efficient and satisfy the following No-Envy
criterion.

No-Envy For all a and b, qa �a qb.

No-Envy postulates that in the allocation of lotteries, no individual would
prefer to replace their lottery with that of any other agent.11 Clearly, if
�1= . . . =�N=�, then No-Envy implies equality, in the sense that for all
a, b ∈ A, f(a) ∼ f(b).



they do not satisfy monotonicity with respect to first order stochastic dom-
inance, and equilibrium does not exist. We show in the proof of Theorem 3
that this stronger version of monotonicity eliminates the existence problem.

Remark 1 Let T be the number of lotteries used in the proposed solution.
Then for h = 1, 2, ..., T there is a continuum of agents who receive the same
binary lottery, say (xh, ρh; yh, 1−ρh) for some outcomes xh, yh and ρh ∈ [0, 1].
The implementation of this, so that the fraction of the people in this group
that receives xh is ρh, can be guaranteed by using the appropriate law of large
numbers for a continuum of independent random variables. Such approach
appears, for example, in Sun [34], and we adopt here his measure theoretic
framework.12



may know which of the two vases is Ming and which is a modern counterfeit,



5 Concluding Remarks

The use of binary lotteries is pervasive in economics. Many experimental
works are conducted with choices among such lotteries (or between them
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Since all probabilities are between 0 and 1, it follows by standard arguments
that there is a subsequence of qh, without loss of generality the sequence itself,
such that for all n = 1, . . . , Nk, qn,h → qn,∗. The vector q∗ = (q1,∗, . . . , qNk,∗)
satisfies eqs. (1) and (2), hence it is a solution. Since V is continuous it
satisfies equality, and as by the continuity of V , V (qn,∗) = vn, it follows by
the definition of v that q∗ is optimal.

We next establish the bound M on the number of possible binary lotteries.
Relabel the basic goods so that all agents agree that x1 ≻ x2 ≻ . . . ≻ xN .
Consider the set B := {(xi












