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Abstract

We provide a new method to point identify and estimate cross-sectional multinomial choice

models, using conditional error symmetry. Our model nests common random coe¢ cient spec-

i…cations (without having to specify which regressors have random coe¢ cients), and more

generally allows for arbitrary heteroskedasticity on most regressors, unknown error distribu-

tion, and does not require a “large support” (such as identi…cation at in…nity) assumption.

We propose an estimator that minimizes the squared di¤erences of the estimated error den-

sity at pairs of symmetric points about the origin. Our estimator is root N consistent and

asymptotically normal, making statistical inference straightforward.

1 Introduction

Traditional multinomial choice models, such as multinomial logit (MNL) and multinomial probit

(MNP), e.g., McFadden (1974), assume homoskedastic errors. However, in reality substantial
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unobserved heterogeneity is common, e.g., Heckman (2001). We provide a new method to point

identify preference parameters in cross-sectional multinomial choice models in the presence of gen-

eral unobserved individual heterogeneity. Our identi…cation is semiparametric, in that we do not

specify the joint distribution of the latent errors, and we allow for arbitrary heteroskedasticity with

respect to most regressors, including possible random coe¢ cients. We propose a corresponding



and Tang (2016) in contrast …nd that symmetry, when combined with conditional independence



Using the analogy principle, we construct a corresponding estimator that minimizes the

squared di¤erences of the estimated error densities at each data point with its corresponding

symmetry point. We show this minimum distance estimator is root N consistent and asymptoti-

cally normal. Computing the objective function of our estimator does not entail either numerical

integration or deconvolution techniques, which are often required by random coe¢ cients mod-

els. Moreover, our estimator does not require specifying which covariates, if any, have random

coe¢ cients, and is no more or less complicated regardless of how many covariates have random

coe¢ cients, or any other more complicated forms of heteroskedasticity.

Many methods have been developed for identifying and estimating utility function parame-

ters with cross-sectional multinomial choice data. Many of those methods assume independence

between the covariates and error terms, ruling out the possibility of individual heterogeneity such

as random coe¢ cients (Ruuluydence



the general multinomial choice case, we show root-N consistency and asymptotic normality of our

estimator, and we provide proofs for all of our theorems.

2 The Model and Identi…cation

2.1 The Random Utility Framework

To simplify notation and presentation of our results, for the main text of this paper we restrict

attention to the case of three choices, with the relative utility of the outside option, denotedj = 0,

normalized to equal zero. General results for an arbitrary number of multinomial choices, and



single outcome likey0, because the choice of any one outcome depends on the utilities of all of

the outcomes.



an absolutely continuous density function, f " 1" 2 ( t1; t2j X ), which is centrally symmetric

about the origin, i.e.,

f " 1" 2 ( t1; t2j X ) = f " 1" 2 ( �t 1; �t 2j X ) ;

for any vector (t 1; t2) "12



I1, this yields the equations

@2E (y0 j z = z � ; X = X � )
@z1@z2

=
@2 Pr (y0 = 1 j z = z � ; X = X � )

@z1@z2
(4)

= f " 1" 2

�
�z �

1 � x �0
1 � o; �z �

2 � x �0
2 � o j X = X � �

� (�1) 2;

and

@2E (y0 j z = �z � � 2X � � ; X = X � )
@z1@z2

=
@2 Pr (y0 = 1 j z = �z � � 2X � � ; X = X � )

@z1@z2
(5)

= f " 1" 2

�
z�

1 + 2x �0
1 � � x �0

1 � o; z�
2 + 2x �0

2 � � x �0
2 � o j X = X � �

� (�1) 2:

The left sides of equations (4) and (5) are both identi…ed, and can be estimated as nonparametric

regression derivatives, given a value of� . If � = � o, then by the symmetry Assumption I2, the

right sides of equations (4) and (5) are equal to each other. De…ne the functiond0(� ; z � ; X � ) as



have positive probability measure for any � in the parameter space other than� o. Assumptions

I4 and I5 give one set of conditions that su¢ ce.Assumption I4 provides a subset of the support

of covariates with positive measure on which the functiond0(� ; z � ; X � ) can be identi…ed, while

Assumption I5 ensures that symmetry points are unique.

Given these assumptions we obtain identi…cation as follows. All proofs are in the Supplemen-

tary Appendix.

Theorem 2.1 If Assumption I hold, then the parameter vector � o 2 � is point identi…ed by

De…nition 2.1.

2.3.1 Discussion

Theorem 2.1 used expectations ofy0. Additional identifying information (resulting in more e¢ -

cient associated estimators) can similarly be obtained fromy1 and y2. Details are in the supple-

mental appendix.

The conditional independence betweenz and " in Assumption I1 is known as a distributional

exclusion restriction (Powell, 1994, p. 2484). This allows for interpersonal heteroskedasticity on

a subset of covariates: Higher moments of" can depend (in unknown ways) onX , but not z .

Assumption I2 is our error symmetry restriction. Without loss of generality we assume that the

point of symmetry is the origin, because any nonzero term could be absorbed into the intercept

of the utility index as discussed in equation (1).

Assumption I3 assumes a compact parameter space, which is a standard assumption for many

nonlinear models, including semiparametric multinomial discrete choice models. Assumption I4(a)



Assumption I5(a) ensures that the error density functions in (4) and (5) are evaluated at

interior points of their support. Assumption I5(b) requires that the error density function has

a unique (local) symmetry point over a subset of its support, eS" (X � ). This does not rule out

densities having ‡at sections, but it does limit the range of any such ‡at sections.

2.4 An Alternative Identi…cation Strategy

Existing binary choice estimators that make use of latent error symmetry (e.g. Chen (2000) and

Chen, Khan and Tang (2016) are based on the error distribution function rather than on the

error density function as in Theorem 2.1. To illustrate, take a simple binary choice model where

y = I (z + a + v � 0). If v is a symmetric random variable around zero andv ? z, then

E (y j z = c) = Pr ( v � � c � a) = Pr (v � c + a) = E (1 � y j z = �c � 2a) (8)

The constant a is identi…ed by equating the above two expectations, which only requires estimation

of the conditional mean of y and not its derivatives. This immediately extends to identi…cation

of covariate coe¢ cients instead of just a constant.

We could have similarly based identi…cation and estimation of our multinomial� on the dis-

tribution instead of the density of the errors, and thereby only required nonparametric regressions

and not their derivatives for estimation. However, unlike the binary choice case, identi…cation and

estimation using the distribution instead of the density of the errors becomes complicated and

clumsy in the multinomial setting. This is because, in the binary choice case, error symmetry just

equates two conditional expectations, corresponding to two error intervals, while for multinomial

choice, one must equate error rectangles.

To see the issue, begin again from equation (3). Let[a; b] be a rectangle in the support of

". Point a = (a 1; a2) is the lower left vertex of this rectangle andb = (b 1; b2) is the upper right

vertex. By central symmetry, the probability of " being in the rectangle[a; b] = [ a1; b1] � [a2; b2]

is the same as the probability of" being in the rectangle[�b; �a] = [ �b 1; �a 1] � [�b 2; �a 2]. This
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then implies

Z

[a;b]
f " 1" 2 ( t1; t2j X ) dt =

Z

[a;b]
f " 1" 2 ( �t 1; �t 2j X ) dt =

Z

[�b;�a]
f " 1" 2 ( t1; t2j X ) dt; (9)

where the …rst equality in (9) holds by Assumption A2 and the second one holds by changing of

variables.7

The integrals on both sides of equation (9) can be computed using the conditional distribution

function of ", which in turn is obtained from the conditional expectation of y0. For example,

consider the left-hand side integral:

R
[a;b] f " (t j X ) dt = Pr (a � " � b j X )

= Pr (a 1 � "1 � b1; a2 � "2 � b2 j X )

= Pr (" 1 � b1; "2 � b2 j X ) � Pr (" 1 < a 1; "2 � b2 j X )

� Pr (" 1 � b1; "2 < a 2 j X ) + Pr (" 1 < a 1; "2 < a 2 j X ) :

(10)



We prefer to identify and estimate � by matching each point in the data using densities, rather

than by matching rectangles using distributions, for many reasons. First, equating error distri-

bution rectangles involves more tuning parameters, since rectangles need to be chosen. Second,

matching densities only requires …nding enough points (z = z � ; X = X � ) in the data that have

matches(z = �z � � 2X � � ; X = X � ) that lie in the support of the covariates. In contrast, each

matching rectangle requires …nding an entire range of covariates that lie in the support and has

a range of matches that also lie entirely in the support. Third, to gain e¢ ciency we will later

create more moments by replacingy0 with di¤erent choices yj . When matching density points,

the same covariate values (points) that work for any one choicej will also work for any other

choice. The same is not true for matching distribution rectangles, because for rectangles each

match entails pairs of observations rather than individual observations. Finally, the computation

cost of estimation is lower for equating error densities than for distribution rectangles. For a

sample of sizeN , we compute error densities at2N points, while in contrast, using rectangles

would entail computing the error distribution at N (N � 1)2J points.

3 A Minimum Distance Estimator and its Asymptotic Properties

3.1 Population Objective Functions for Estimation

Given the identi…cation strategy described in Section 2, we develop a minimum distance estimator

(hereafter, MD estimator) for � o 2 � using the identifying restriction d0(� o; z � ; X � ) = 0, where

d0 is de…ned by equation (6). Note that the functiond0(� ; z � ; X � ) is well de…ned if both points

(z � ; X � ) and (�z � � 2X � � ; X � ) are in the interior of the support of covariates, S(z ;X ) . For this

reason, we only wish to evaluate the functiond0(� ; z � ; X � )



the range of these values. De…ne functions� 0(�) and &0(�) by

� 0
�
z ; X ; � ; �

�
� &0 (z ; X ) &0

�
�z � 2X � ; X

�
&0 (�z � 2X� ; X ) ; (11)

and

&0 (z ; X ) � 1 (jz j � c1) � 1 (jX j � C 2) . (12)

Here the absolute value of a vector or matrix,j � j, is de…ned as the corresponding vector or matrix



3.2 An Estimator

We now provide an estimator for function d0 (� ; zn ; X n ) in (13) as

d̂0;�n (� ; zn ; X n ) � '̂ (2)
o;�n (z n ; X n ) � '̂ (2)

cs;�n (z n ; X n ; � ) : (14)

where '̂ (2)
o;�n (z n ; X n ) and '̂ (2)

cs;�n (z n ; X n ; � ) are leave-one-out, Nadaraya-Watson nonparametric

regression kernel estimators for the derivatives on the right hand side of equation (6) (see the sup-

plemental appendix for details). By replacing the expectation inQ0 (� ) with its sample mean and

replacing the function d0(� ; zn ; X n )





QNj (� ) over each choice. We also extend all our results to multnomial choice with an arbitrary

number of choices, instead of just three as above.

4 Monte Carlo Experiments

In this section, we use Monte Carlo experiments to study the …nite-sample properties of the

minimum distance (MD) estimator proposed above. We consider four data generating processes

(DGPs). In each DGP, individual n’s utility from alternative j , unj , is speci…ed as

unj = znj + xnj � n + "nj for n = 1; 2; :::; N and j = 0; 1;2: (17)



Table 1: Monte Carlo Results of estimating � o (True Parameter � o = 0:2)

MNP MD ( y0) MD (y 0; y1; y2)

DGP N Bias RMSE Bias RMSE Bias RMSE

1 1000 -0.0012 0.0435 0.0216 0.2368 -0.0017 0.1337

2000 -0.0010 0.0307 0.0055 0.1355 -0.0078 0.0788

2 1000 0.5656 0.5833 0.1047 0.3521 -0.0392 0.3048

2000 0.5627 0.5714 0.0543 0.2308 -0.0289 0.1747

3 1000 -0.0013 0.0454 0.0317 0.2220 0.0015 0.1417

2000 -0.0017 0.0319 0.0158 0.1301 -0.0051 0.0812

4 1000 -0.7512 0.7718 -0.0054 0.3765 -0.0748 0.3550

2000 -0.7481 0.7585 0.0180 0.2616 -0.0343 0.2149

covariates. Under all four DGP’s our MD estimator remains consistent.

Table 1 reports the bias and root mean square error (RMSE) of each estimator in our simula-

tions. The …rst set of columns reports the MNP estimator, the second reports our MD estimator

using only y0, while the third uses observations of all choicesy0, y1, and y2 (MNP also uses

observations of all choices).

Under DGP 1, the MD estimators have small …nite sample bias, and RMSEs two to four times

larger than that of the correctly speci…ed e¢ cient MNP estimator. Under DGP 2, the bias of

the misspeci…ed MNP estimator is around three times the true parameter value, and this bias

remains as the sample size is doubled. In contrast, the bias and RMSE of the MD estimators are

much smaller than the MNP estimator, and they decrease sharply as the sample size increases.

In DGP 3, the random coe¢ cients MNP is correctly speci…ed, and so performs better than the

MD estimators in terms of bias and RMSE. However, in DGP 4 where the random component

is heterogeneous, the bias of MNP is almost four times the true parameter value and does not

vanish as sample size grows. In contrast, the bias of the MD estimators is still relatively small.9

In all the DGPs, in terms of RMSE, the MD estimator using y0, y1, and y2 performs better than

9We speculate that the bias in the MD estimators might be further reduced by a bandwidth search, and/or using
local linear estimation for the …rst stage choice probabilities.

17





References

[1] Ahn, H., Ichimura, H., Powell, J.L., and Ruud, P. (2018): “Simple Estimators for Invertible

Index Models,” Journal of Business and Economic Statistics, 36, 1-10.

[2] Berry, S. and Haile P.A. (2010): “Nonparametric Identi…cation of Multinomial Choice De-

mand Models with Heterogeneous Consumers,”Cowles Foundation Discussion Paper #1718.

[3] Berry, S., Levinsohn, J., and Pakes, A. (1995): “Automobile Prices in Market,” Econometrica,

63, 841-890.

[4] Berry, S., Levinsohn, J., and Pakes, A. (2004): “Di¤erentiated Products Demand Systems

from a Combination of Micro and Macro Data: The New Car Market,” Journal of Political

Economy, 112(1), 68-105.

[5] Blundell, R. and Powel, J.L. (2004): “Endogeneity in Semiparametric Binary Response Mod-

els,” Review of Economic Studies, 71, 655–679.

[6] Chen, S. (2000): “E¢ cient Estimation of Binary Choice Models under Symmetry,”Journal

of Econometrics, 96, 183-199.



[10] Delaigle, A. and Hall, P. (2016): “Methodology for Non-parametric Deconvolution When

the Error Distribution is Unknown,” Journal of the Royal Statistical Society, Series B, 78,

231–252.

[11] Dong, Y. and Lewbel, A. (2011): “Nonparametric Identi…cation of a Binary Random Factor

in Cross Section Data,” Journal of Econometrics, 163, 163-171.

[12] Fox, J.T. (2007): “Semiparametric Estimation of Multinomial Discrete-choice Models Using

a Subset of Choices,”RAND Journal of Economics, 38, 1002-1019.

[13] Fox, J.T. and Gandhi, A. (2016): “Nonparametric Identi…cation and Estimation of Random

Coe¢ cients in Multinomial Choice Models,” RAND Journal of Economics, 47, 118-139.

[14] Goolsbee, A. and Petrin. A (2004): “The Consumer Gains from Direct Broadcast Satellites

and the Competition with Cable TV,” Econometrica, 72, 351-381.

[15] Hausman, J.A. and Wise, D.A. (1978): “A Conditional Probit Model for Qualitative Choice:

Discrete Decisions Recognizing Interdependence and Heterogeneous Preferences,”Economet-

rica, 46, 403-426.

[16] Heckman, J. (2001): “Micro Data, Heterogeneity, and the Evaluation of Public Policy: Nobel

Lecture” Journal of Political Economy, 109, 673-748.

[17] Honoré, B. E., Kyriazidou, E., and Udry, C. (1997): “Estimation of Type 3 Tobit Models

using Symmetric Trimming and Pairwise Comparisons,” Journal of Econometrics, 76, 107-

128.

[18] Khan, S., Ouyang, F., and Tamer, E. (2019): “ Inference in Semiparametric Multinomial

Response Models,”Working Paper.

[19] Kumbhakar, S.C. and Lovell, C.A.K. (2000): Stochastic Frontier Analysis. Cambridge Uni-

versity Press, Cambridge.

20



[20] Lee, L. (1995): “Semiparametric Maximum Likelihood Estimation of Polychotomous and

Sequential Choice Models,”Journal of Econometrics, 65, 381-428.

[21] Lewbel, A. (1997): “Constructing Instruments for Regressions With Measurement Error

When no Additional Data are Available, with An Application to Patents and R&D,” Econo-

metrica, 65, 1201-1213.

[22] Lewbel, A. (2000): “Semiparametric Qualitative Response Model Estimation with Unknown

Heteroskedasticity or Instrumental Variables,” Journal of Econometrics, 97, 145-177.

[23] Manski, C.F. (1975): “Maximum Score Estimation of the Stochastic Utility Model of Choice,”

Journal of Econometrics, 3, 205-228.

[24] Manski CF. (1985): “Semiparametric Analysis of Discrete Response: Asymptotic Properties

of the Maximum Score Estimator,” Journal of Econometrics, 27, 313-333.

[25] Manski, C.F. (1988): “Identi…cation of Binary Response Models,”Journal of the American

Statistical Association, 83, 729-738.

[26] McFadden, D. (1974): “Conditional Logit Analysis of Qualitative Choice Behavior,”in Fron-



[31] Powell, J.L. and Ruud, P.A. (2008): “Simple Estimators for Semiparametric Multinomial

Choice Models,”Working Paper.

[32] Ruud, P.A. (1986): “Consistent Estimation of Limited Dependent Variable Models Despite

Misspeci…cation of Distribution,” Journal of Econometrics, 32, 157-187. Cambridge Univer-

sity Press.

[33] Ser‡ing, R. (2006): “Multivariate Symmetry and Asymmetry,” Encyclopedia of Statistical

Sciences. John Wiley & Sons, Inc.

[34] Shi, X., Shum, M., and Song, W. (2018): “Estimating Semi-Parametric Panel Multinomial

Choice Models Using Cyclic Monotonicity,” Econometrica, 86, 737-761.

[35] Train, K. (2009): Discrete Choice Methods with Simulation.

[36] Yan, J. (2013): “A Smoothed Maximum Score Estimator for Multinomial Discrete Choice

Models,”Working Paper.

[37] Yan, J. and Yoo, H. (2019): “Semiparametric Estimation of the Random Utility Model with

Rank-ordered Choice Data,” Journal of Econometrics, 211, 414-438.

[38] Zhou, Y. (2021): “Identi…cation and Estimation of of Entry Games under the Symmetry of

Unobservables,”Working Paper, NYU, Shanghai.

22



Supplementary Appendix: Semiparametric Identi…cation and

Estimation of Multinomial Discrete Choice Models using Error

Symmetry�

Arthur Lewbel y Jin Yanz Yu Zhoux

Original February 2019, revised December 2021







Based on Assumptions I1 and I2, we have that if� = � o, then d0 (� ; z � ; X � ) = 0. Given some

regularity conditions, setting the function d0 equal to zero at a collection of values ofz � and

X � provides enough equations to point identify � o. The proof of Theorem S.A.1 is provided in

Section S.C.

Theorem S.A.1 If Assumptions I hold, then the parameter vector � o 2 � is point identiÖed by

DeÖnition 1.

S.A.2 Identi…cation Using Multiple Choices

In Section A.1, we identi…ed the parameter vector� o using only derivatives of the conditional

mean of y0. Here we illustrate that identi…cation can be achieved using the conditional mean

of yj for any j 2 J. Later we will increase e¢ ciency of estimation by combining the identifying

moments based on each of the observed choicesyj .

We now introduce some additional notation. For eachj 2 J, de…neX (j ) as the matrix that

consists of di¤erenced covariate vectors~x k � ~x j for all k 2 J and k 6=j . For example, when

1 < j < J , X (j ) � ( ~x 0 � ~x j ; : : : ; ~x j �1 � ~x j ; ~x j +1 � ~x j ; : : : ; ~x J � ~x j )0 2 R J �q . By this notation,

we haveX (0) � ( ~x 1 � ~x 0; : : : ; ~x J � ~x 0) = X . In the same fashion, de…nez (j ) 2 R J as the vectorx





Proposition S.A.2 If Assumption I 2 holds, then for every j 2 J and almost every X (j ) 2 SX ( j ) ,

the conditional distribution function F" ( j ) (t (j ) j X (j ) ) admits an absolutely continuous density

function, f " ( j ) (t (j ) j X (j ) ), which is centrally symmetric about the origin, i.e.,

f " (j ) (t (j ) j X (j ) ) = f " (j ) (�t (j ) j X (j ) ); (S.A.13)

for any vector t (j ) 2 S" ( j ) (X (j ) ) where S" ( j ) (X (j ) ) � R J .



of the left-hand sides of (S.A.15) and (S.A.16), that is,

dj (� ; z (j )� ; X (j )� ) � @J E(yj j z (j ) = z (j )� ; X (j ) = X (j )� )=@z(j )
1 : : : @z(j )

J (S.A.17)

� @J E(yj j z (j ) = �z (j )� � 2X (j )� � ; X (j ) = X (j )� )=@z(j )
1 : : : @z(j )

J :

which always equals zero when� = � o and may be non-zero when� 6=� o.

Then, analogous to De…nition 1, de…ne

D j (� ) �
n

(z (j )� ; X (j )� ) 2 int
�

S(z ( j ) ;X ( j ) )

�

�
�
� (�z (j )� � 2X (j )� � ; X (j )� ) 2 int

�
S(z ( j ) ;X ( j ) )

�
; dj (� ; z (j )� ; X (j )� ) 6= 0

o
:

(S.A.18)

Recall that there is a one-to-one correspondence, respectively, betweenX (j ) and X , z (j ) and z,

and " (j ) and ". For every (z � ; X � ) 2 int(S (z ;X ) ) such that (�z � � 2X � � ; X � ) 2 int(S (z ;X ) ), we

immediately have (z (j )� ; X (j )� ) 2 int(S (z ( j ) ;X ( j ) ) ) and (�z (j )� � 2X (j )� � ; X (j )� ) 2 int(S (z ( j ) ;X ( j ) ) ),

as well asdj (� ; z (j )� ; X (j )� ) = 0 if and only if dj (� ; z � ; X � ) = 0 . Therefore, we can also use the

choice probability of any alternative in the choice set to achieve identi…cation.

S.A.3 Individual Heterogeneity and Random Coe¢ cient

Our identifying assumptions do not refer speci…cally to random coe¢ cients. Here we provide

su¢ cient conditions for our key identi…cation assumptions I1 and I2 to hold when unobserved







to know exactly which covariates have random coe¢ cients and which do not. Last, our model

does not require thin tails or unimodality, unlike, e.g., normal random coe¢ cient MNP models.4

One restriction we do impose is that we require one covariate in each choicej , zj , not have

a random coe¢ cient. Setting the coe¢ cient of some covariatez equal to one is often a natural,

economically meaningful normalization. For example, utility of choices are typically modeled

as bene…ts minus costs. Bene…ts may be subjective and so vary heterogeneously as in random

coe¢ cients, while costs are often objective and …xed. In these casesz would be a cost measure.

Examples are willingness to pay studies where the bene…ts equal the willingness to pay, and

consumer choice applications wherezj is the price of choicej . (See e.g., Bliemer and Rose 2013

for more discussion and examples.5) Nevertheless, we could also assume that, before normalizing,

the variable z has a random coe¢ cient, provided that the random coe¢ cient is the same for all

choices and is positive (this latter restriction is a special case of the hemisphere condition required

by semiparametric binary choice random coe¢ cient estimators. See, e.g., Gautier and Kitamura

2013). This restriction is needed because we can’t allow renormalizations that would change any

individual’s relative ranking of utilities. Note that in this case, we require our symmetry condition

to hold after renormalization, not before.



for j = 0; : : : ; J , where dj is de…ned as the same as equation (S.A.17).

For each j , the function dj (� ; z (j )� ; X (j )� ) is well de…ned if both points(z (j )� ; X (j )� ) and

(�z (j )� � 2X (j )� � ; X (j )� ) are in the interior of the support of covariates, S(z ( j ) ;X ( j ) ) . For this

reason, we only wish to evaluate the functiondj (� ; z (j )� ; X (j )� ) at such points. This can be

achieved by multiplying each function dj (� ; z (j )� ; X (j )� ) by a trimming function of the form

� j

�
z (j ) ; X (j ) ; � ; �

�
� &j

�
z (j ) ; X (j )

�
&j

�
�z (j ) � 2X (j ) � ; X (j )

�
&j

�
�z (j ) � 2X (j ) � ; X (j )

�
;

whereX (j ) � ( X (j ) � ) gives the upper (lower) bound value that the indexX (j ) � can take. A sim-

ple choice for the function&j (�) is &j

�
z (j ) ; X (j )

�
� 1

�
jz (j ) j � c(j )

1

�
� 1

�
jX (j ) j � C (j )

2

�
, where the

absolute value of a vector or matrix, j � j , is de…ned as the corresponding vector or matrix of the ab-

solute values of each element,c(j )
1 2 R J is a vector of trimming constants for the covariate vector

z (j ) , and C (j )
2 2 R J �q is a matrix of trimming constants for the covariate matrix X (j ) such that

�
c(j )

1 ; C (j )
2

�
is in the interior of the support of covariates S(z ( j ) ;X ( j ) ) . Denote ST r

z ( j )

�
X (j ) ; � ; �

�
as

the largest set of valuesz (j ) given � , � , and X (j ) , such that ST r
z ( j )

�
X (j ) ; � ; �

�
� int

�
Sz ( j )

�
X (j )

��
.

We describe the regularity conditions on the trimming function in Assumption TR.

Assumption TR. The trimming function � j

�
z (j ) ; X (j ) ; � ; �

�
is strictly positive and bounded

on ST r
z ( j )

�
X (j ) ; � ; �

�
� int

�
SX ( j )

�
, and is equal to zero on its complementary set forj = 0; : : : ; J .

Theorem S.B.1 If Assumptions I and TR hold, then (i) Qj (� ) � 0 for any � 2 � and (ii)

Qj (� ) = 0 if and only if � = � o.

Theorem S.B.1 shows identi…cation based on the population objective function. Proofs is

available at authors’webpage.
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S.B.2 MD Estimator and Regularity Conditions

Next, we derive the sample objective function based on population objective function and the

asymptotic properties of the MD estimator. To ease notation, we denote the conditional means

E
�

yj j z (j ) = z (j )
n ; X (j ) = X (j )

n

�
� ' j

�
z (j )

n ; X (j )
n

�
� ' j;o

�
z (j )

n ; X (j )
n

�
;

E
�

yj j z (j ) = �z (j )
n � 2X (j )

n � ; X (j ) = X (j )
n

�
� ' j

�
�z (j )

n � 2X (j )
n � ; X (j )

n

�
� ' j;cs

�
z (j )

n ; X (j )
n ; �

�
;

and function

dj (� ; z (j )
n ; X (j )

n ) �
@J E

�
yj j z (j ) = z (j )

n ; X (j ) = X (j )
n

�

@z(j )
1 � � � @z(j )

J

�
@J E

�
yj j z (j ) = �z (j )

n � 2X (j )
n � ; X (j ) = X (j )

n

�

@z(j )
1 � � � @z(j )

J
(S.B.2)

� ' (J )
j;o

�
z (j )

n ; X (j )
n

�
� ' (J )

j;cs

�
z (j )

n ; X (j )
n ; �

�
:

where ' (J )
j;o

�
z (j )

n ; X (j )
n

�
� @J ' j;o

�
z (j )

n ; X (j )
n

�
=@z(j )

1 � � � @z(j )
J and ' (J )

j;cs

�
z (j )

n ; X (j )
n ; �

�
is de…ned in

the similar way as ' (J )
j;o

�
z (j )

n ; X (j )
n

�
. Now, consider a leave-one-out (LOO) Nadaraya-Watson

(NW) estimator for ' (J )
j;o; �n as '̂ (J )

j;o; �n (�; �) =
1

N �1

PN
m=1;m6=n ymj K ( J )

hz

�
z ( j )

m ��
�

K hX

�
X ( j )

m ��
�

1
N �1

PN
m=1;m6=n K hz

�
z ( j )

m ��
�

K hX

�
X ( j )

m ��
� , where

K h z

�
z (j )

m � �
�

=
Q J

l=1 h�1
zl

k
�

h�1
zl

�
z(j )

ml � �
��

; and K h X

�
X (j )

m � �
�

=
Q J

l=1
Q q

r =1 h�1
x lr

k
�

h�1
x lr

�
x(j )

mlr � �
��

.

The properties of the kernel function k and those of the bandwidth h z � (hz1 ; � � � ; hzJ )0 and

hX



By replacing the expectation in Qj (� ) with its sample mean and function dj (� ; z (j )
n ; X (j )

n ) with

its LOO estimator d̂j; �n

�
� ; z (j )

n ; X (j )
n

�
, we de…ne the MD estimator

�̂ 2 arg min
� 2�

QNj (� ) ;

where QNj (� ) =
1

2N

NX

n=1

h
� j

�
z (j )

n ; X (j )
n

�
d̂j; �n

�
� ; z (j )

n ; X (j )
n

�i 2
:

We denote the gradient of the objective function asqNj (� ) = r � QNj (� ) and the Hessian

matrix of the objective function as H Nj (� ) = r �� 0QNj (� ) : The smoothness of the objec-

tive function suggests the …rst-order condition (FOC):qNj

�
�̂

�
= 0q. Applying the standard

…rst-order Taylor expansion toqNj

�
�̂

�
around the true parameter vector � o yields qNj

�
�̂

�
=

qNj (� o) + H Nj

�
~�
� �

�̂ � � o
�

, where ~� is a vector between the MD estimator �̂ and the true

parameter vector � o. Then the in‡uence function will be given by

�̂ � � o = �
h
H Nj

�
~�
�i �1

qNj (� o) : (S.B.4)

We will show that H Nj

�
~�
�

! p H j (� o) ; where

H j (� o) = E
�

� 2
j

�
z (j )

n ; X (j )
n

�
r � dj

�
� o; z (j )

n ; X (j )
n

� h
r � dj

�
� o; z (j )

n ; X (j )
n

�i 0
�

; (S.B.5)

and
p

N qNj (� o) ! d N (0q; 
 j ), where 
 j is the probability limit of the variance-covariance

matrix of qNj (� o). To obtain these properties, we assume the following regularity conditions.

Assumption E.

� E1: f(y n ; zn ; X n ) , for n = 1; : : : ; N g is a random sample drawn from the in…nite population

distribution.

13



� E2: The following smoothness conditions hold: (a) The density functionf j

�
z (j ) ; X (j )

�
is

continuous in the components ofz (j ) for all z (j ) 2 S T r
z

�
X (j ) ; � ; �

�
and X (j ) 2 int (SX ).

In addition, f j

�
z (j ) ; X (j )

�
is bounded away from zero uniformly over its support. (b)

Functions f j

�
z (j ) ; X (j )

�
, gj

�
z (j ) ; X (j )

�
and ' j

�
z (j ) ; X (j )

�
are s (s � J + 1) times con-

tinuously di¤erentiable in the components of z (j ) for all z (j ) 2 S T r
z

�
X (j ) ; � ; �

�
and have

bounded derivatives.

� E3: The kernel function k is an l-th ( l � 1) order bias-reducing kernel that satis…es (a)

k (u) = k (�u ) for any u



schitz conditions: for somem
�
z (j ) ; ·

�

�
�
�
�

@J ' j;o (z ( j ) +t;· )
@z( j )

1 ���@z( j )
J

�
@J ' j;o (z ( j ) ;·)
@z(j )

1 ���@z( j )
J

�
�
�
� < m

�
z (j ) ; ·

�
ktk ;

�
�
�
�

@J ' j;cs (z ( j ) +t;· )
@z( j )

1 ���@z( j )
J

�
@J ' j;cs (z ( j ) ;·)

@z(���



(b) (Asymptotic Normality) The MD estimator is asymptotically normal, i.e.,

p
N

�
�̂ � � o

�
! d N

�
0q; H �1

j 
 j H �1
j

�

where matrix 
 j � E
�

t nj t 0
nj

�
and H j



would be equal, while under the alternative there must exist symmetric points where the densities

are not equal. Also under the null, our estimator is consistent. So a test could be constructed

based on the di¤erence in error density estimates at many symmetry points (other than those

used for estimation), using our estimated parameters to construct symmetry points. More general

speci…cation tests could also be constructed, using the fact that our parameters are over identi…ed

when more than one choicej is observed.

S.C Proof of Identi…cation

Proof of Theorem S.A.1: First, we show that D0(� o) is a set of measure zero. If not, assume

that there is a point (z � ; X � ) in set D0(� o). By de…nition in equation (8), both points (z � ; X � )

and (�z � � 2X � � o; X � ) are in set int(S (z ;X ) ). By Assumptions I1, I2, and equations (5)-(7), we

have function

d0(� o; z � ; X � ) = (�1) J [f " (�z � � X � � o j X = X � ) � f " (z � + X � � o j X = X � )] = 0 ;

which is a contradiction with de…nition in equation (8).

Next, we prove that Pr[ (z � ; X � ) 2 D 0(� ) ] > 0 for any � 6=� o, where � 2 � and parameter

space� satis…es Assumption I3. Denote the setX (� ) � fX � 2 SX j X � (� � � o) 6=0g, which is a

collection of covariate values at whichX� 6=X� o. By Assumption I4(a) and the fact � � � o 6=0q,

X (� ) is a subset in the support ofSX with positive measure, that is,

Pr [X � 2 X (� )] > 0: (S.C.1)

Recall that we useX c and X d, respectively, to denote the continuous and discrete covariates

in X . We de…ne the interior of the support ofX as int (SX ) �

�
(X �

c; X �
d) 2 S(X c ;X d ) j X �

c 2 int (SX c (X �
d)) ; X �

d 2 SX d

	
. De…ne

eS(z ;X ) (� ) �
n

(z � ; X � ) 2 S(z ;X )

�
�
� z � 2 eSz (X � ); X � 2 X (� ) \ int (SX )

o
; (S.C.2)
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where eSz (X � ) satis…es Assumption I4(c). By construction, seteS(z ;X ) (� ) is a Lebesgue measurable

subset ofint(S (z ;X ) ). Next we construct a subset in the support of covariates(z ; X ) as follows:

eD0 (� ) �
n

(z � ; X � ) 2 eS(z ;X ) (�



S.D Monte Carlo Details

As discussed in the paper, our Monte Carlo design includes 4 data generating processes (DGPs).

Details of the distribution of each DGP are provided in Table 1.

Table 1: Designs of the Data Generating Processes (DGPs)
DGP Distribution of � n Distribution of "nj

1 � n = 0:2 "nj = � nj

2 � n = 0:2 "nj = 1
2e2xnj � nj ,

3 � n = 0:2 + � n "nj = 1
2 � nj

where � n = 1
2#n

4 � n = 0:2 + � n "nj = 1
2 � nj

where � n = ( exn1 + exn2 ) � #n

Note: both #n and � nj are standard normal random varaibles, and they are independent of each
other and all the covariates, and i.i.d. across the subscripted dimension(s).

For the MD estimator, we consider both the case where the researcher only observes whether

the outside option (i.e., alternative 0) is chosen, and so just minimizesQN 0 (� ), and the case where

the researcher also observes which alternative is chosen by each decision maker, and so minimizes

the sum ofQNj (� ) for j = 0; 1;2. In all DGPs, each covariateznj is a continuous uniform random

variable over the interval [�9; 9] and xnj is a binary variable that takes value of2 or �2 with equal

probability for j = 1; 2. The covariates of alternative0 are zn0 = 0 and xn0 = 0. All the observed

covariates are independent of each other and are independent, identically distributed across the

subscripted dimension(s).

We use a grid search to compute our MD estimator over a parameter space of[�0:8; 0:8] with

the bin width of 0:05. In the estimation of choice probabilities we apply a truncated normal

density for the kernel function kh(�) with bandwidth hj = sd(znj )N (�1=22) , where j = 1; 2. Our



are O(hs) with s � J + 1 and O(Nh �2(J
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S.D Proofs Regarding Estimation

In this section, we provide the proofs of Theorems S.B.1-S.B.3 in Section S.B of the Supplementary

Appendix and their related lemmas. Speci…cally, Section S.D.1 provides the proof of Theorem

S.B.1 on the population sample objective function; Section S.D.2 collects preliminary lemmas

needed for the asympotic properties of the MD estimator de…ned in Section S.B.2; Section S.D.3

provides the proofs of Theorem S.B.2, the consistency of the MD estimator; and Section S.D.4

gives the proofs of Theorem S.B.3, the asymptotic linearity and normality of the estimator and

related lemmas. Throughout this appendix, we use the same notations and acronyms de…ned in

the main text.
�



S.D.1 Proof of the Population Objective Function

Proof of Theorem S.B.1 : Part (i) can be shown directly from the quadratic form of the

population objective function. We will explicitly prove that Part (ii) holds. To show the existence

of a minimizer, recall the population objective function

Qj (� ) �
1



mentary Appendix Section S.A.1; and the second term equals to zero sincedj

�
� o; z (j )

n ; X (j )
n

�
= 0.

Q.E.D.



Proof of Lemma S.D.2: The proofs for three terms are similar. We wil focus on the proof

for ĝj

�
z (j )

n ; X (j )
n

�
. Other terms can be done in a similar fashion. First, by the fact that the

outcome come variables By the fact that the outcome variables are binary and functionf j is

bounded away from zero, applying the results of Lemma B.1 and Lemma B.2 in Newey (1994)

gives the …rst equality in each equation. Second, the second equality follows from Asssumption

10 using Lemma 8.10 in Newey and McFadden (1994).Q.E.D.

De…nef̂ (t)
j

�
z (j ) ; X (j )

�
= @t f̂ j =@z1;(t) � � � @zt;(t) be the derivative with respect to z (j )

(t) , where

z (j )
(t) =

�
z(j )

1;(t) ; � � � ; @z(j )
t;(t)

�
be any t-element of z (j ) . Similarly, we can de…nef (t)

j

�
z (j ) ; X (j )

�
,

ĝ(t)
j

�
z (j ) ; X (j )

�
, g(t)

j

�
z (j ) ; X (j )

�
, '̂ (t)

j

�
z (j ) ; X (j )

�
and ' (t)

j

�
z (j ) ; X (j )

�
:

Lemma S.D.3 Under Assumptions E2-E5, for t = 1; : : : ; J ,

sup�
z ( j )

n ;X ( j )
n

�
2S T r

(z ( j ) ;X ( j ) )

�
�
� f̂ (t)

j

�
z (j )

n ; X (j )
n

�
� f (t)

j

�
z (j )

n ; X (j )
n

� �
�
� = Op

 s
ln N

NhJ +2t+Jq
N

+ hs
N

!

= op

�
N �1=4

�

sup�
z ( j )

n ;X ( j )
n

�
2S T r

(z ( j ) ;X ( j ) )

�
�
� ĝ(t)

j

�
z (j )

n ; X (j )
n

�
� g(t)

j

�
z (j )

n ; X (j )
n

� �
�
� = Op

 s
ln N

NhJ +2t+Jq
N

+ hs
N

!

= op

�
N �1=4

�

sup�
z ( j )

n ;X ( j )
n

�
2S T r

(z ( j ) ;X ( j ) )

�
�
� '̂ (t)

j

�
z (j )

n ; X (j )
n

�
� ' (t)

j

�
z (j )

n ; X (j )
n

� �
�
� = Op

 s
ln N

NhJ +2t+Jq
N

+ hs
N

!

= op

�
N �1=4

�

Proof of Lemma S.D.3: The proof follows the same method used in LemmaS.D.2. Q.E.D.
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Lemma S.D.4 Under Assumptions E2-E5, for t = 1; : : : ; J ,

sup�
z ( j )

n ;X ( j )
n

�
2S T r

(z ( j ) ;X ( j ) )



 r �

�
f̂ (t)

j

�
z (j )

n ; X (j )
n

��
� r �

�
f (t)

j

�
z (j )

n ; X (j )
n

�� 



= Op

 s
ln N



Condition (4) following Hong and Tamer (2003). We …rst introduce an infeasible sample objective

function �QNj (� ), de…ned as

�QNj (� ) =
1

2N

X N

n=1

h
� j

�
z (j )

n ; X (j )
n

�
dj

�
� ; z (j )

n ; X (j )
n

�i 2
:

Following the triangle inequality, we have

jQNj (� ) � Qj (� )j �
�
�QNj (� ) � �QNj (� )

�
� +

�
� �QNj (� ) � Qj (� )

�
� : (S.D.3)

Then, it is su¢ cient to show that the two terms on the right side of (S.D.3) go to zero uniformly,

that is, (i) sup � 2�
�
�QNj (� ) � �QNj (� )

�
� = op (1) and (ii) sup � 2�

�
� �QNj (� ) � Qj (� )

�
� = op (1).

For Part (i), we observe that

sup
� 2�

�
�QNj (� ) � �QNj (� )

�
� (S.D.4)

= sup
� 2�

�
�
�
�

1
2N

X N

n=1

h
� 2

j

�
z (j )

n ; X (j )
n

� �
d̂2

j; �n

�
� ; z (j )

n ; X (j )
n

�
� d2

j

�
� ; z (j )

n ; X (j )
n

��i �
�
�
�

= sup
� 2�

�
�
�
�

1
2N

X N

n=1
� 2

j

�
z (j )

n ; X (j )
n

� �
d̂j; �n

�
� ; z (j )

n ; X (j )
n

�
+ dj

�
� ; z (j )

n ; X (j )
n

��

�
�

d̂j; �n

�
� ; z (j )

n ; X (j )
n

�
� dj

�
� ; z (j )

n ; X (j )
n

�� �
�
�

� C sup
� 2�

sup�
z ( j )

n ;X ( j )
n

�
2S T r

(z ( j ) ;X ( j ) )

�
�
� d̂j; �n

�
� ; z (j )

n ; X (j )
n

�
� dj

�
� ; z (j )

n ; X (j )
n

� �
�
� = op (1) :

The …rst equality in (S.D.4) follows from de…nition and direct calculation. The second equality

holds by factorization. The next inequality is satis…ed by the fact that functions � j and dj are

boundedQEXS. The last equality follows the fact that

sup
� 2�

sup
z

�
z ( j )

n ;X ( j )
n

�
2S T r

(z ( j ) ;X ( j ) )

�
�
� d̂j; �n

�
� ; z (j )

n ; X (j )
n

�
� dj

�
� ; z (j )

n ; X (j )
n

� �
�
�

is bounded by the product of a constant and the derivative functions shown by Lemma S.D.3.
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Part (ii) holds by showing pointwise convergence and stochastic equicontinuity. By the Law

of Large Numbers (LLN), we can directly obtain the pointwise convergence of�QNj (� ) to Qj (� ).

Next we can conclude the uniformity by showing stochastic equicontinuity, that is,

sup
� (1) ;� (2) 2�;jj� (1) �� (2) jj��

�
�
� �QNj

�
� (1)

�
� �QNj

�
� (2)

� �
�
� = op (1) :

Following Andrews (1994), the stochastic equicontinuity can be shown by verifying that �QNj (� )

is the type II class of function, satisfying the Lipschitz condition
�
�
� �QNj

�
� (1)

�
� �QNj

�
� (2)

� �
�
� �

Cjj� (1) � � (2) jj. We verify that this holds from the continuity of the quadratic form of the objective

function and the continuity of the kernel derivative functions with bounded second derivatives.

Q.E.D.

S.D.4 Asymptotic Linearity and Normality of the MD Estimator

In this section, we …rst show the lemmas that contribute to the proof of Theorem S.B.3

Lemma S.D.5 Under Assumptions I,TR and E, H Nj

�
~�
�

! p H j , where

H j = E
�

� 2
j

�
z (j )

n ; X (j )
n

�
r � dj

�
� o; z (j )

n ; X (j )
n

� h
r � dj

�
� o; z (j )

n ; X (j )
n

�i 0
�

Proof of Lemma S.D.5: To show the desired result, we …rst show that the following results

hold:

(i) H Nj

�
~�
�

= H Nj;1

�
~�
�

+ H Nj;2

�
~�
�

; where

H Nj;1

�
~�
�

=
1
N

X N

n=1
� 2

j

�
z (j )

n ; X (j )
n

�
d̂j; �n

�
~� ; z (j )

n ; X (j )
n

� h
r �� 0 d̂j; �n

�
~� ; z (j )

n ; X (j )
n

�i
;

H Nj;2

�
~�
�

=
1
N

X N

n=1
� 2

j

�
z (j )

n ; X (j )
n

�
r � d̂j; �n

�
~� ; z (j )

n ; X (j )
n

� h
r � d̂j; �n

�
~� ; z (j )

n ; X (j )
n

�i 0
;

(ii) H Nj;1

�
~�
�

= op (1) ; and (iii) H Nj;2

�
~�
�

! p H j .

7



The decomposition in Part (i) follows from direct calculation. For Part (ii), observe that

H Nj;1

�
~�
�

=
h
H Nj;1

�
~�
�

� H Nj;1 (� o)
i

+ H Nj;1 (� o) = op (1)

Given that ~� lies between� o and ~� , we get that ~� is uniformly consistent, and by applying the

Delta method for the continuity of the choice probability, we obtain that H Nj;1

�
~�
�

� H Nj;1 (� o) =

op (1). Next, H Nj1 (���





Next we calculate

qNj;2 (� o) (S.D.7)

=
1
N

X N

n=1
� 2

j

�
z (j )

n ; X (j )
n

� h
'̂ (J )

j;o; �n

�
z (j )

n ; X (j )
n

�
� ' (J )

j;o

�
z (j )

n ; X (j )
n

�

+ '̂ (J )
j;cs; �n

�
z (j )

n ; X (j )
n ; � o

�
� ' (J )

j;cs

�
z (j )
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where j represents the choice ofj product and (j ) represents the derivatives with respect toj
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where  N (! m ; ! n ) =  N;o (! m ; ! n ) �  N;cs (! m ; ! n ) with
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The second, third and fourth equalities follows from adding and substracting terms. The last
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Combining all the terms gives the desired results.Q.E.D.
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Lemma S.D.8 Under Assumptions E2-E5,
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where the …rst equality in (S.D.10) follows from de…nitions; the second equality holds using a

change of variables; and the third equality is satis…ed by Assumptions E3 and E4. The desired
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Second, to show Part (ii) holds, by direct calculation, we have
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The last second equality follows from integration by parts and a Taylor expansion. We therefore

get that 1
N

P N
n=1 (r N 2 (! n ) � E [rN 2 (! n )]) = op

�
N �1=2

�
.
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where

ro (! m ) =
Z @J � j

�
z (j )

m ; X (j )
m ; � o

�
' j

�
z (j )

m ; X (j )
m

�

@z(j )
1 � � � @z(j )

J

K h z

�
u



probability to zero. Note that

1
p

N

X N

m=1
(r o (! m ) � E [ro (! m )]) (S.D.15)

=
1

p
N

X N

m=1

0

@� j

�
z (j )

m ; X (j )
m ; � o

� @J ' j;o

�
z (j )

m ; X (j )
m

�

@z(j )
1 � � � @z(j )

J

�E

2

4� j

�
z (j )

m ; X (j )
m ; � o

� @J ' j;o

�
z (j )

m ; X (j )
m

�

@z(j )
1 � � � @z(j )

J

3

5

1

A

�
1

p
N

X N

m=1

�
ymj � ' j;o

�
z (j )

m ; X (j )
m

�� @J � j

�
z (j )

m ; X (j )
m ; � o

�

@z(j )
1 � � � @z(j )

J

+ E

2

4
�

ymj � ' j;o

�
z (j )

m ; X (j )
m

�� @J � j

�
z (j )

m ; X (j )
m ; � o

�

@z(j )
1 � � � @z(j )

J

3

5

and

1
p

N

X N

m=1
(r cs (! m ) � E [r cs (! m )]) (S.D.16)

=
1

p
N

X N

m=1

0

@� j

�
z (j )

m ; X (j )
m ; � o

� @J ' j;cs

�
z (j )

m ; X (j )
m ; � o

�

@z(j )
1 � � � @z(j )

J

�E

2

4� j

�
z (j )

m ; X (j )
m ; � o

� @J ' j;cs;

;



Then
1

p
N

X N

m=1
(r (! m
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