




independent, real valued, nondegenerate random variables with unknown distributions. The

unknown constant c is real valued, finite, and nonzero.

ASSUMPTION A3: Either the median or the mean of U , V , or W is zero. The character-

istic functions of U , V , and W do not vanish.

Assumption A3 is mainly used for identification of the distributions of U , V , and W , not

for the identification of c. Kotlarski’s Lemma requires some location normalization, as in

Assumption A3. Evdokimov and White (2012) provide alternative conditions under which

Kotlarski’s Lemma holds even when the characteristic functions of U , V , and/or W can have

zeros.

Kotlarski’s Lemma assumes c D 1. We assume c 6D 0 because, if c D 0 then trivially we

can only identify the distributions of W and of V C U . Moreover, we can immediately tell if

c D 0, because in that case the distributions of X and Y will be independent.

For any random variables R and S, let � 2
R D var .R/ if this variance exists, and let

� RS D cov .R; S/ if this covariance exists. Also let  R .t/ D ln E
[
exp .i t R/

]
, the log

characteristic function (also known as the cumulant generating function) of R, and similarly

 R;S .t1; t2/ D ln E
[
exp .i t1 R C i t2S/

]
.

We begin with a tiny Lemma:

LEMMA 1: Let Assumptions A1, A2, and A3 hold. If the constant c is point identified,

then the distributions of U , V , and W are all also point identified.
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equations give a bound on c (it must lie between zero and the coefficient of �t1t2), but this

bound is tightened below.

Lemma 1 and Theorem 1 together show how to tell if V is normal or not, and show that

Kotlarski’s Lemma extends to point identification with an unknown factor loading c as long

as V is non-normal.

Now consider the case where V is normal. For this case, we need some more notation.

For a random variable R, define R’s "largest normal factor" to be the variable R̃ having the

maximum variance such that R D R̃ C R, where R̃ and R are independently distributed and

R̃ is normally distributed. Without loss of generality, assume R̃ has mean zero. Call R the

non-normal factor. If no normal R̃ exists, then R does not have a normal factor, and in this

case we can let R̃ D 0 and R D R. If R is normal then R̃ D R � E .R/ and R D E .R/.
See Schennach and Hu (2013) and Lewbel, Schennach, and Zhang (2020) for a similar use of

normal factors. Reiersøl (1950) calls a normal factor a normal divisor.

Given a random variable R, the variance of R̃ can be determined by

� 2

R̃
D sup

{
� 2 2 RC :  R .t/C t2� 2=2 is a log characteristic function

}
If � 2

R̃
D 0 then R does not have a normal factor, otherwise, � 2

R̃
given by this expression is

the variance of the largest normal factor R̃. This follows immediately from the definition of

a characteristic function, since a positive � 2

R̃
means by construction that R equals the convo-

lution of two independent random variables, one of which has the log characteristic function

of a mean zero normal.2 This means that if R has a known distribution, and hence a known

characteristic function, we can determine if it has a normal factor or not, and we can point

identify the distributions of R̃ and R.

THEOREM 2: Let Assumptions A1, A2, and A3 hold. Assume V is normally distributed.

Then � X̃ Ỹ , � 2

X̃
, and � 2

Ỹ
are identified. If � X̃ Ỹ =�

2

X̃
D � 2

Ỹ
=� X̃ Ỹ then c is point identified by

c D � X̃ Ỹ =�
2

X̃
D � 2

Ỹ
=� X̃ Ỹ and in this case neither W nor U have a normal factor. Otherwise,

c is interval identified by c 2
[
� X̃ Ỹ =�

2

X̃
, � 2

Ỹ
=� X̃ Ỹ

]
, and for each value of c in this interval,

there is a corresponding, identified unique distribution for U , V , and W . This interval bound

on c is sharp.

The fact that c is point identified when neither W nor U have a normal factor also appears

in Reiersøl (1950). The identified sets in Theorem 2 are new, but are closely related to the

Frisch (1934) bounds on mismeasured linear regressions. Taken together, Lemma 1, Theorem

1, and Theorem 2 completely characterize the identification of our model.

Proof of Theorem 2: Separating Y and X into their normal and non-normal factors, we

have Y D Ỹ C Y and X D X̃ C X . Similarly, Separating W and U into normal and non-

normal factors, we also have Y D cV C W̃ C W and X D V C Ũ C U . When V is normal,

this implies Ỹ D cV C W̃ , Y D W , X̃ D V C Ũ and X D U . This in turn means that, with V

2An explicit mathematical expression for "being a characteristic function" and hence defining � 2

R̃
can be

obtained from Bochner’s Theorem, e.g., Theorem 4.2.2 in Lukacs (1970).
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normal, X and Y are independent of each other and of the joint distribution of Ỹ and X̃ . Since

the marginal distributions of Y and X are identified, we can identify the left side of

 Y;X .t1; t2/�  Y .t1/�  X .t2/ D  Ỹ ;X̃ .t1; t2/

And therefore the joint normal distribution of the mean zero variables Ỹ and X̃ is identified.

In particular, this means that � 2

Ỹ
, � 2

X̃
, and � X̃ Ỹ are identified.

The remaining step now borrows heavily from the Frisch (1934) bounds on mismeasured

linear regression. From the identified second moments of Ỹ and X̃ , we have � 2

Ỹ
D c2� 2

VC�
2

W̃
,

� 2

X̃
D � 2

V C �
2

Ũ
, and � X̃ Ỹ D c� 2

V , which provides three equations in the four unknown

constants � 2

Ũ
, � 2

W̃
, � 2

V , and c. The only constraints on these parameter values are that c 6D

0, � 2

Ũ
and � 2

W̃
must be non-negative (either can be zero if the corresponding normal factor

doesn’t exist), and � 2
V must be positive. These being the only constraints is what makes the

corresponding bounds be sharp. The equation � X̃ Ỹ D c� 2
V means that the sign of c equals the

sign of � X̃ Ỹ to ensure � 2
V > 0. Then � 2

Ũ
� 0 requires � 2

X̃
� � X̃ Ỹ =c � 0 and � 2

W̃
� 0 requires

� 2

Ỹ
� c� X̃ Ỹ � 0. Therefore, either � X̃ Ỹ > 0 and � X̃ Ỹ =�

2

X̃
� c � � 2

Ỹ
=� X̃ Ỹ , or � X̃ Ỹ < 0 and

� 2

Ỹ
=� X̃ Ỹ � c � � X̃ Ỹ =�

2

X̃
. Either way c lies in the interval between � X̃ Ỹ =�

2

X̃
and � 2

Ỹ
=� X̃ Ỹ ,
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